FEBRUARY 16, 2024

Attention: Benjamin Nicolucci

RE: TRANSPORTATION IMPACTBRIEF

 744 RRSTAVENUE CITY OF WEllAND, REG ION OF NIAGARADear Benja min,
In support of the Zoning By-Law Amendment and Draft Plan of Subdivision, related to the proposed residential development at 744 First Avenue in the City of Wella nd (City), Nia gara Region (Region), C.F. Crozier \& Associates Inc. (Crozier) has prepared the following Transp ortation Impa ct Brief (TB).

The pupose of this letter is to a nalyze the following a spects of the proposed development from a transportation operations perspective:

- The existing road network and record infomation relating to road jurisdiction, road classific ation, posted speed limit, la ne configuration, cross-section elements.
- Forecast the trip generation characteristic s of the proposed development using the Institute of Transportation Engineers Manual (11th edition).
- Analyze the full build-out traffic operations using Synchro modelling softwa re during the critic al peak hours.
- Evaluate the proposed site access from a sight distance perspective.

1.0 Introduction

C.F. Crozier \& Associates Inc. (Crozier) was reta ined by Ambria (First Wella nd) Limited to complete a TIB for a proposed residential townhouse development situated at 744 First Avenue in the City of Welland.

The purpose of this letter is to a nalyze the impact of the proposed development on the surrounding road network and recommend transportation mitigation measures, if warranted.

A Terms of Reference (ToR) encompassing the scope of the T1B wascirculated to the City of Wella nd on December 5, 2023, a nd comments were received from the City on December 5, 2023. The ToR was also circulated to the City of Thorold staff, a nd comments were received on December 6, 2023. C orrespondence from the City of Welland and City of Thorold is included in Appendix A.

1.1 Development Lands

The subject lands cover an area of approximately 3.87 ha and currently consists of an existing residentia l build ing and a gric ultural lands. The site, located in a rural neighbohood zoned Agricultural (A1) and Environmental Conservation (EC), is bounded by First Avenue/Cataract Road to the west and agric ultural zoned lands to the north, east, and south.

The location of the proposed development is attached in Appendix B as perthe proposed development's concept plan prepared by the 4 Architecture Inc., dated April 5, 2023.

1.2 Development Proposal

Per the most recent concept plan prepared by 4 Architecture Inc. dated April 5, 2023, elements envisioned for the full buildout of this development include approximately:

- 22 stacked townhouse blocks with a total of 357 units.
- Proposed entrance road off First Avenue and a second access to a future roadway to the south.
- Two east-west intemal roadways a nd three north-south intemal roadways.
- A total of 661 parking spaces including 4 accessible parking spaces.
- A total of 60 bic ycle parking spaces.

The most recent concept plan is attached in Appendix B.

1.3 Scope of Study

In accordance with the City of Welland and Niagara Region Guidelines, the following periods were a nalyzed:

- Analysis of the roadway network during the weekday a.m. and p.m. peak hours.
- Analysis of the roadway network at the full-buildout year (2025), a nd 10 -years from the build out year (2035). The horizon years will be a nalyzed for future total traffic conditions.

Aspart of the study, the following intersection was reviewed:

- Site Access and First Avenue

2.0 Existing Conditions

The intersection of the development's Site Access and First Avenue was reviewed as the study intersection (per confimation with City staff).

The following section provides a desc ription of the study area from a transportation context under 2023 existing conditions.

2.1 Study Road

First Avenue is classified as an Arterial Road under the jurisdiction of the City of Welland and runs north-south with a posted speed of $50 \mathrm{~km} / \mathrm{h}$. There is a community safety zone south of Quaker Road, with a posted speed limit of $40 \mathrm{~km} / \mathrm{h}$. There are bike lanes along the roadway extending south of Quaker Road.

The City of Welland Official Plan is included in Appendix C.

2.2 Study Intersection

The study intersection of Site Access and First Avenue was analyzed as stop-controlled on the minor road. The characteristics of the intersection are summarized in Table 1. Additionally, each approach has a single shared lane for all the movements.

Table 1: Intersec tion Characteristics

Intersection	Control Method	Number of Approaches
Site Access and First Avenue	Stop-Controlled on Minor	3

2.3 Traffic Data

Tuming movement counts at the intersection of Quaker Road and First Avenue and Meritt Road and Cataract Road were provided by Spectrum Traffic. The counts were undertaken on December 12, 2023, between the hours of 6:00 a.m. - 10:00 a.m. and 3:00 p.m. - 7:00 p.m. for the a.m. and p.m. peak periods, respectively. It is important to note that traffic data at these intersections was collected for the purposes of detemining the through traffic volumes at the intersection of Site Access at First Avenue.

The existing traffic data is found in Appendix D.

2.4 Analysis Methodology

The evaluation of intersections within this report is conducted based on the methodology outlined in the Highway Capacity Manual, using Synchro 11 modelling software. Intersections are assessed using a Level of Service (LOS) metric, with ranges of intersection delays a ssigned a letter from "A" to " F ".

Generally, a LOS "A" or "B" would typically be measured hours when lesser traffic volumes are on the roadways and delays a re minimal. LOS "C" through " F " would typically be observed during commuter peak hours when signific ant vehic le volumes would cause lengthy travel times. The LOS definitions for stop-controlled intersections a re included in Appendix E.

3.0 Future Background Conditions

Future background conditions refer to traffic conditions incorporating expected growth, development and improvements within the surrounding intersections occuring within the study horizons, outside of the development proposal.

Future background traffic volumes for horizon years consist of the following components:

- Background traffic growth from outside the study a rea.
- Traffic generated within the study area from other proposed developments.

It is important to note that the analysis was not performed underfuture background conditions as the purpose of this study was to examine the site access operations. The existing and future background traffic volumes were obtained for the puposes of a nalyzing the network under future total conditions.

3.1 Background Developments

Although the City has not received any formal Planning Act applications, there is currently one (1) active development application in the vicinity of the proposed site that were considered as part of this report.

For the Northwest Welland Secondary Plan, the application is for proposed mixed-use residential development. The development plan is a susta inable community that will incorporate several active transportation elements, including sidewalks, cycling facilities, multi-use pathways and other infrastruc ture. There are approximately 190 hectares of prima rily rural/a gric ultural designated lands, with an estimated 55 hectares of land presently developed and municipally serviced. The development will include a mix of townhouses/condominium complexes, singlefamily dwellings and other mixed-use developments.

Perthe findings in the Transportation Assessment Preferred Plan (TAPP) report, it is estimated the development will generate 744 two-way (185 inbound and 559 outbound) trips during the weekday a.m. peak hour. The Tapp Report does not provide p.m. peak hour trip generation due to a lack of directional flow information (Associated Engineering, 2020). For the purposes of this analysis, the site-generated trips were calculated using IE Trip Generation Manual, 11th Edition and were confirmed by the City on J anuary 18, 2024.

3.2 Future Roadway Improvement

There are currently no roadway or intersection improvements known at this time.

3.3 Traffic Growth Rates

Per disc ussion with the City of Welland, a growth rate of 2% was applied to all traffic, as confirmed in the Terms of Reference established with City staff.

4.0 Site Generated Traffic

The proposed development will result in additional vehic les on the boundary road network that would otherwise not exist. The development will also result in additional tuming movements at the intersections.

4.1 TE Trip Generation

The ITE Trip Generation Manual, 11th Edition, was used to forec ast the site-generated traffic for the proposed development. The concept plan is presented in Appendix B.

The a nalysis was conducted with a previous version of the concept plan (dated July 8, 2022), which was analyzed with 22 stacked townhouse blocks, with a total of 360 units. As the updated concept plan (dated April 5, 2023) provided a lower unit count of 357 , the trip generation used in this a nalysis was based on the concept plan dated July 8, 2022.

Table 2: Site Generated Thips (J uly 8, 2022 Concept Plan)

Land Use (ITE LUC)	Units	Equation or Average Used	Thip Generation			
			Weekday A.M.		Weekday P.M.	
			Inbound	Outbound	Inbound	Outbound
LUC 220: Multifa mily Housing (Low-Rise)	$\begin{gathered} 360 \\ \text { Units } \end{gathered}$	$\begin{gathered} \text { Equation } \\ \text { A.M. } \\ \mathrm{T}=0.31 \mathrm{X}+22.85 \\ \text { P.M. } \\ \mathrm{T}=0.43 \mathrm{X}+20.55 \end{gathered}$	32	102	110	65
Total			32	102	110	65

Asshown in Table 2, the proposed development is expected to generate 134 two-way (32 inbound and 102 outbound) trips during the weekday a.m. peak hour, and 175 two-way (110 inbound and 65 outbound) trips during the weekday p.m. peak hour. Appendix G provides excerpts from the ITE Trip Generation Manual, $11^{\text {th }}$ Edition.

4.2 Tip Distribution and Assignment

The site generated trips were distributed to the boundary roadways based on the Transportation Tomorrow Survey (TIS) data.

TIS is a comprehensive survey of transportation characteristic s of households in the Golden Horseshoe and surrounding areas. 2016 Transportation Tomorrow Survey (TTS) data, provided in Appendix H, was used to determine the trip distribution for the proposed residential development.

The subject property is situated in 2016 TIS Zone 6259. TIS results were filtered from this zone to reflect trip distribution pattems during the weekday peak periods. To model the worst-case scenario, all site-generated traffic volumes were assigned to the intersection of Site Access and First Avenue.

Asper section 3.1, the site-generated trips for the Northwest Welland Secondary Plan background development were calculated by determining the difference between 2031 future total volumes (Figure 5-2) and 2018 future background volumes (Figure 2-6) from the Northwest Welland Secondary Plan report.

Table $\mathbf{3}$ outlines the trip distribution for the proposed development divided into time and direction of travel.

Table 3: Trip Distribution

Direction	A.M. Inbound	A.M. Outbound	P.M. Inbound	P.M. Outbound
Northwest	0%	8%	3%	11%
North	0%	24%	26%	0%
Northeast	0%	6%	2%	0%
East	100%	9%	10%	0%
Southeast	0%	8%	17%	49%
South	0%	33%	22%	4%
Southwest	0%	4%	5%	16%
West	0%	7%	15%	19%
Total	$\mathbf{1 0 0 \%}$			

5.0 Future Total Traffic Operations

Future Total traffic volumes for horizon years consist of the following components:

- Background traffic growth from outside the study a rea.
- Traffic generated within the study area from other proposed developments.
- Traffic expected to be generated by the development.

The resulting total volumes in the 2025 and 2035 horizon years are presented in Appendix I.

5.1 Study Horizon

Asconfirmed with the City of Welland, the horizon years selected to assess the impacts of the proposed development include:

- Full build-out year. 2025
- Ten years from full build -out year (2025): 2035

5.2 Intersection Operations

This section summarizes the results of the intersection operations during the Future Total scena rio. Table 4 and Table 5 summa rize the results from the Future Total scena io for each horizon year.

Detailed capacity a nalyses are provided in Appendix I.

Table 4: 2025 Future Total Traffic Operations

Intersection	Control	Peak Hour	Level of Senvice $^{\mathbf{1}}$	Control Delay (s)	Critical V/C Ratio 2	95 Percentile Queue Length
Site Access and First Avenue	Minor Stop- Controlled	P.M.	C	19.8	0.32 (WBLR)	None
	E	40.0	0.41 (WBLR)	None		

Note 1: The Level of Service of a Stop-Controlled intersection is based on the delay associated with the critical approach. At unsignalized intersections, a Level of Service of " D " or worse is deemed critical.
Note 2: The critical v/c ratio is the maximum v/c ratio formovements at the intersection. In addition, all v/c ratios greater than 0.85 for through and shared through/tuming movements are highlighted.

Table 5: 2035 Future Total Traffic Operations

Intersection	Control	Peak Hour	Level of Service ${ }^{1}$	Control Delay (s)	Critical V/C Ratio (Approach) ${ }^{2}$	95 ${ }^{\text {th }}$ Percentile Queue Length
Site Access and First Avenue	MinorStop-Controlled	A.M.	C	22.0	0.35 (WBLR)	None
		P.M.	E	48.8	0.47 (WBLR)	None

Note 1: The Level of Service of a Stop-Controlled intersection is based on the delay associated with the critical approach. At unsignalized intersections, a Level of Service of "D" or worse is deemed critical.
Note 2: The critical v / c ratio is the maximum v / c ratio formovements at the intersection. In addition, all v / c ratios greater than 0.85 for through and shared through/tuming movements are highlighted.

Under the 2037 Future Total Conditions, the study intersection of Site Access and First Avenue operates with Level of Service (LOS) "C" in the a.m. peak period, with minor delays and well under capacity. The intersection operates at a LOS "E" in the p.m. peak period. However, the maximum volume-to-capacity is below the critical threshold of 0.85 . No otheroperational concems are observed.

The LOS is acceptable as the delay is only seen on the site access approach and not on First Avenue. This sc ena rio represents the worst-case scenario, and more vehicles are expected to utilize the other site access once the future road is constructed.

6.0 Left-Tum Lane Warrants

Based on the City's comments, a left-tum lane warrant was conducted at the southbound approach at the intersection of Site Access and First Avenue. According to Exhibit 9A-7 from section 9.17 Left-Tum Lanes in the MTO Design Supplement for TAC Geometric Design Guide for Canadian Roads-J une 2017, a left-tum lane is wa ranted for the southbound approach at the intersection of Site Access and First Avenue. A storage of 15 m is recommended based on the warrants. It is important to note that although a left-tum warrant was conducted as requested by the City and that a left-tum is wa ranted, the intersection operations do not change with the addition of a southbound left-tum lane at the intersection of Site Access and First Avenue. All left-tum lane warrants are included in Appendix J.

7.0 Site Access Review

The site was reviewed including to check the sightlines, a nd there were no operational or sa fety issues from the transportation a spect.

7.1 Sightline Review

The a vailable sightlines for the future site access at First Avenue was measured and compared to the standards set out in the Transportation Association of Canada (TAC) Geometric Design Guide for Canadian Roads (GDGCR), J une 2017. Appendix Kc onta ins exc epts from the TAC GDGCR Manual.

Sight distance was measured from the proposed site access using the following assumptions:

- A standard driver eye height of 1.08 meters for a passenger car.
- A 5.4-metre setback from the approximate extension of the outercurb to represent a vehic le waiting to exit the site.
- A passenger car was used as the design vehicle.
- The time gap was assumed for the design vehicle as pertable 9.93 of the GDGCR.

Intersection sight distance is calculated using equation 9.9.1 from the GDGCR as outlined below:

$$
\text { ISD }=0.278 * V \text { major } * \operatorname{tg}
$$

Where;
ISD = Intersection Sight Distance
V major = design speed of roadway (km/h)
tg =assumed time gap for vehic les to tum from stop onto roadway (s)
A design speed $10 \mathrm{~km} / \mathrm{h}$ higher than the posted or assumed speeds of each road of study was assumed for the sight dista nce a nalysis. Table $\mathbf{6}$ summarizes the sight dista nce a na lysis.

Table 6: Site Access Sight Distance Calculations

Feature	Site Access and First Avenue
Access Type	Full-Movement
Posted Speed Limit of Roadway	$50 \mathrm{~km} / \mathrm{h}$
Assumed Design Speed	$60 \mathrm{~km} / \mathrm{h}$
Base Time Gap	6.5 s (right) 7.5 s (left)
Grade of Roadway	Less than 3\%
Horizontal Alignment of Roadway	Straight
Required Sight Distance (right tum)	110 m
Available Sight Distance (right tum)	$>200 \mathrm{~m}$
Required Sight Distance (left tum)	130 m
Available Sight Distance (left tum)	$>200 \mathrm{~m}$
Minimum Sight Distances Satisfied?	Yes

Utilizing equation 9.9.1 as well astables 9.9.6 and 9.9.4 provided by the TAC guideline, the required sight distance of a passenger vehicle making a right-tum and a left-tum from stop are approximately 110 metres and 130 metres, respectively, forthe design speed of $60 \mathrm{~km} / \mathrm{h}$. The proposed site access along First Avenue meets all relevant TAC GDGCR requirements of the sight distance a nalysis.

8.0 Conclusion

This study has analyzed potential traffic impact on the boundary road network in relation to the proposed residential development at 744 First Avenue in the City of Welland. The detailed capacity a nalyses conta ined within this report may be summarized with the following key findings:

- Tuming movement counts at the intersection of Quaker Road and First Avenue and Meritt Road and Cataract Road were provided by Spectrum Traffic. It is important to note that traffic data at these intersections was collected for the puposes of interpolating traffic volumes at the intersection of Site Access at First Avenue.
- A growth rate of 2% was provided by the City of Welland and applied as directed.
- The proposed development was analyzed under future total conditions only. The existing and future background traffic volumes were obtained for the puposes of a nalyzing the study intersection under future total conditions.
- The proposed development is expected to generate 134 two-way (32 inbound and 102 outbound) trips during the weekday a.m. peak hour, and 175 two-way (110 inbound and 65 outbound) trips during the weekday p.m. peak hour.
- Under the 2037 Future Total C onditions, the study intersection of Site Access a nd First Avenue operates with Level of Service (LOS) "C" in the a.m. peak period, with= minor delays and no capacity concems. The intersection operates at a LOS "E" in the p.m. peak period. However, the maximum volume-to-capacity is below the critic al threshold of 0.85 . No other operational concems are observed.
- The delay is concentrated on the site access approach which occurs in the worst-case scenario in which the second access off the future road is not built.
- According to Exhibit 9A-7 from section 9.17 Left-Tum Lanes in the MTO Design Supplement for TAC Geometric Design Guide for Canadian Roads - J une 2017, a left-tum lane is wa ranted in the southbound approach at the intersection of Site Access a nd First Avenue. A storage of 15 m is recommended by the warrants.
- The proposed site access along First Avenue meets all relevant TAC GDGCR requirements of the sight distance a nalysis.

Based on the information presented in this report, the proposed development can be supported from a transportation operations perspective.

Respectfully submitted,

C.F. CROZER \& ASSOCIATES INC.

lan Lindley, M.A.Sc, P. Eng Project Engineer, Transportation

C.F. CROZER \& ASSOCIATES INC.

$\mathrm{J}: \backslash 1800 \backslash 1846$ - Ambria (First Welland) Limited $\backslash 6748$ - 744 First Avenue \backslash Reports Traffic $\backslash 2024.02 .16$ _744 First Avenue_7B Final.docx

APPENDIX A

Correspondence

Aiman Khan

From:

Sent:
To:
Subject:

Shaira Ahmed
January 5, 2024 10:10 AM
Aiman Khan
FW: 744 First Avenue Terms of Reference (CFCA\#1846-6748)

Shaira Ahmed

Engineering Intern, Transportation
DID: 905.693.4706
From: Haesun Jung Haesun.Jung@thorold.ca
Sent: Wednesday, December 6, 2023 10:04 AM
To: Shaira Ahmed sahmed@cfcrozier.ca
Cc: Ian Lindley ilindley@cfcrozier.ca; Aaron Wignall awignall@cfcrozier.ca; Sean Dunsmore Sean.Dunsmore@thorold.ca
Subject: RE: 744 First Avenue Terms of Reference (CFCA\#1846-6748)
Good morning,
City of Thorold has no comment for townhouse development.
Thank you!

From: Shaira Ahmed sahmed@cfcrozier.ca
Sent: December 5, 2023 5:03 PM
To: Haesun Jung < Haesun.Jung@thorold.ca>; Sean Dunsmore Sean.Dunsmore@thorold.ca
Cc: Ian Lindley ilindley@cfcrozier.ca; Aaron Wignall awignall@cfcrozier.ca
Subject: FW: 744 First Avenue Terms of Reference (CFCA\#1846-6748)

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Hello,

We have received comments on our Terms of Reference (ToR) for a townhouse development from the City of Welland staff and have been advised to reach out to the City of Thorld staff for comments. Please see below for the ToR and Ali's comments.

Please let me know if there are any questions or concerns.
Regards,

Shaira Ahmed

Engineering Intern, Transportation
Office: 905.875.0026
Collingwood | Milton | Toronto | Bradford | Guelph

Learn all about our latest awards \& recognition here.

LINKEDIN | INSTAGRAM | FACEBOOK | TWITTER

From: Ali Khan ali.khan@welland.ca
Sent: Tuesday, December 5, 2023 2:46 PM
To: Shaira Ahmed sahmed@cfcrozier.ca
Cc: Ian Lindley ilindley@cfcrozier.ca; Aaron Wignall awignall@cfcrozier.ca
Subject: RE: 744 First Avenue Terms of Reference (CFCA\#1846-6748)

Shaira,

My comments are highlighted below.

Regards,

Muhammad Ali Khan, M.A.Sc; P.Eng.
Manager, Traffic/Parking/ Bylaws
Planning and Development Services 60 East Main Street, Welland, Ontario L3B 3X4

CITY OF

From: Shaira Ahmed sahmed@cfcrozier.ca
Sent: Tuesday, December 5, 2023 1:21 PM
To: Ali Khan ali.khan@welland.ca
Cc: Ian Lindley ilindley@cfcrozier.ca; Aaron Wignall awignall@cfcrozier.ca
Subject: 744 First Avenue Terms of Reference (CFCA\#1846-6748)

WARNING: This email originated from an external sender. eMail from City of Welland email accounts will not begin with this warning! Please do not click links or open attachments unless you are sure they are safe!

Hello,
C.F. Crozier and Associates (Crozier) has been retained to prepare a Transportation Impact Brief (TIB) for a residential townhouse development located at 744 First Avenue in the City of Welland in support of the Zoning By-Law Amendment (ZBA) and Draft Plan of Subdivision (DPS). These terms of reference are based upon the Pre-consultation meeting form dated January 20, 2022.

According to the Concept Plan, the elements envisioned for this development include:

- A total of 22 stacked townhouse blocks, with a total of 360 units.
- Proposed entrance road off First Avenue and a future roadway to the south.
- Two east-west internal roadways and three north-south internal roadways.
- A total of 657 parking spaces with an addition of 4 barrier free parking spaces.
- A total of 60 bicycle parking spaces.

Please see the attached concept plan for more details.

This letter and its attachment are intended to serve as the Terms of Reference (ToR) for the TIB to support the development application.

We are kindly requesting that you review the ToR and provide feedback regarding our scope of work and request for data. Should you not be the appropriate person for correspondence, it would be appreciated to be directed to the appropriate contact.

Study Methodology for the Transportation Impact Brief

The following intersection is proposed to be analyzed as part of the scope of the study:

- Site Access and First Avenue

In order to get the traffic counts expected to be seen at the site access, we will get traffic data from:

- Quaker Road and First Avenue --- 2022 TMC attached.
- Merritt Road and Cataract Road-----Please contact City of Thorold

We will consult specialty traffic counting firms we typically work with to obtain traffic data for the intersections listed above unless the City of Welland (City) has data for these intersections. If the City's data is available and preferred, please let us know. Please confirm the above noted intersections are sufficient for the study.

Analysis Periods and Scenarios

The above intersections will be analyzed in the weekday a.m. and p.m. peak hours of the full build-out year (2025), and 10-years from the build out year (2035). The horizon years will be analyzed for future total traffic conditions.
Please confirm if the peak hour periods and the horizon year is sufficient for the analysis.

Background Developments

Please confirm if any background development should be included in the analysis. If there are developments that need to be considered, please provide the associated transportation impact studies that should be included in our analysis.

Roadway and Transit Improvements

Please provide us with the details on any roadway improvements planned within the study area network.

Traffic Growth

We kindly request a recommended growth rate applicable to traffic volumes in the study area, to sufficiently reflect future conditions in the horizon years. If a growth rate is not available, an industry standard of 2% is suggested to forecast future traffic growth at the intersections of the study. Please confirm if this is acceptable.

Trip Generation and Distribution

Trip generation for the proposed development will be forecasted using the Trip Generation Manual, $11^{\text {th }}$ Edition, prepared by the Institute of Transportation Engineers (ITE). Multifamily Housing (Low-Rise) (LUC 220) will be used to calculate the trips. Please confirm if this is acceptable.

Existing traffic and data from the 2016 Transportation Tomorrow Survey (TTS) will be used to determine the trip distribution for the a.m. and p.m. periods to the proposed development. Please confirm if this is acceptable.

Analysis Procedures

Weekday a.m. and p.m. peak hours will be analyzed using Synchro 11.0 analysis software based on Highway Capacity Manual (HCM) procedures. Please confirm if this acceptable.

Summary

We request the following information for inclusion in the study, along with any comments that arise with regards to the above Terms of Reference.
Please provide:

- Confirmation that the study intersection is sufficient. --- Include all access points from development onto First Ave.
- Relevant growth rate(s) applicable to the roadways of study. 2%
- Confirm the study horizon years are acceptable. Confirmed
- Any relevant background developments and the associated traffic impact studies that are to be included in our analysis. Forwarding your email to planning staff for their input.
- Details of any planned roadway or transit improvements in the surrounding study area within the horizon years, if there are any. Forwarding your email to Engineering staff for their input. For Transit input please contact the Region.
- Confirmation of analysis methodology. Please include warrant analysis for turning lane requirements on First Ave. Also, did you reach out to Thorold staff on this TIS?

I hope the contents outlined in this email are acceptable.
Should you have any questions or require any further information, please feel free to contact lan Lindley or myself.

Regards,

Shaira Ahmed
Engineering Intern, Transportation
Office: 905.875.0026
Collingwood | Milton | Toronto | Bradford | Guelph

$\square \longrightarrow \square$

Learn all about our latest awards \& recognition here.

LINKEDIN | INSTAGRAM \| FACEBOOK \| TWITTER

This email was sent on behalf of C.F. Crozier \& Associates Inc. and may contain confidential and/or privileged information for the sole use of the intended recipient. If you have received this email in error, please contact the sender and delete all copies. Any review or distribution by anyone other than the intended recipient is strictly prohibited.

From:	Ali Khan ali.khan@welland.ca
Sent:	January 18, 2024 3:35 PM
To:	Ian Lindley; Taylor Meadows
Cc:	Shaira Ahmed; Aaron Wignall; Aiman Khan
Subject:	RE: 744 First Avenue Terms of Reference (CFCA\#1846-6748)

Confirmed

Muhammad Ali Khan, M.A.Sc; P.Eng

Manager, Traffic/Parking/ Bylaws
Planning and Development Services
60 East Main Street, Welland, Ontario L3B 3X4
\square Phone: 905-735-1700 x2202
Phone: 905
engagewelland.ca

This email may contain confidential and/or privileged information for the sole use of the intended recipient. Any review, disclosure, or distribution by others is strictly prohibited. If you have received this email in error, please contact the sender immediately and delete all copies.
From: Ian Lindley ilindley@cfcrozier.ca
Sent: Thursday, January 18, 2024 3:23 PM
To: Taylor Meadows taylor.meadows@welland.ca; Ali Khan ali.khan@welland.ca
Cc: Shaira Ahmed sahmed@cfcrozier.ca; Aaron Wignall awignall@cfcrozier.ca; Aiman Khan aiman.khan@cfcrozier.ca
Subject: RE: 744 First Avenue Terms of Reference (CFCA\#1846-6748)

WARNING: This email originated from an external sender. eMail from City of Welland email accounts will not begin with this warning! Please do not click links or open attachments unless you are sure they are safe!

Good Morning,

Upon reviewing the information provided from the NWSP TIS' at the links below we are unable to determine specific generated volumes at our study intersection from the Secondary Plan area.
We did however use the unit counts provided and the ITE trip generation manual, as well as our distribution as outlined below, to determine an estimate and apply it to our study Attached is the results of this estimate. Please confirm if this is acceptable for use or if a specific amount of trips along First Avenue that is generated by the secondary plan area is known.

Regards

Ian

Ian Lindley, M.A.Sc., P.Eng.

Project Engineer, Transportation
Office: 905.876.7119
Collingwood | Milton | Toronto | Bradford | Guelph
Learn how we help our communities thrive here.
INKEDIN | INSTAGRAM | FACEBOOK

CROZIER

 recipient is strictly prohibited.
From: Taylor Meadows taylor.meadows@welland.ca
Sent: Tuesday, December 5, 2023 4:40 PM
o: Ali Khan ali.khan@welland.ca
Cc: Shaira Ahmed sahmed@cfcrozier.ca; Aaron Wignall awignall@cfcrozier.ca; Ian Lindley ilindley@cfcrozier.ca
Subject: RE: 744 First Avenue Terms of Reference (CFCA\#1846-6748)
Afternoon,
 https://www.welland.ca/ReportsStudies.asp - under 'Planning Division'. Included in the information is a 'NWSP Transportation Assessment Preferred Plan'
 commentary from land owners that the units could increase (potentially double) from what was considered at the time.

Regards,

\boxed{x}

Taylor Meadows

lanning Supervisor - Development
Planning Division
60 East Main Street, Welland, Ontario L3B 3X4
\square Phone: 905-735-1700 x2246 _welland.ca
engagewelland.ca
\qquad

This email may contain confidential and/or privileged information for the sole use of the intended recipient. Any review, disclosure, or distribution by others is strictly prohibited. If you have received this email in error, please contact the sender immediately and delete all copies.
Upcoming absence: December 21, 2023 - January 2, 2024
rom: Ali Khan ali.khan@welland.ca
Sent: Tuesday, December 5, 2023 2:50 PM
To: Taylor Meadows taylor.meadows@welland.ca
Cc: Shaira Ahmed sahmed@cfcrozier.ca; Aaron Wignall awignall@cfcrozier.ca; lan Lindley ilindley@cfcrozier.ca
Subject: RE: 744 First Avenue Terms of Reference (CFCA\#1846-6748)
Hi Taylor,

From: Shaira Ahmed sahmed@cfcrozier.ca
sent: Tuesday, December 5, 2023 1:21 PM
To: Ali Khan ali.khan@welland.ca
Cc: lan Lindley ilindley@cfcrozier.ca; Aaron Wignall awignall@cfcrozier.ca
Subject: 744 First Avenue Terms of Reference (CFCA\#1846-6748)
Hello,
 Plan of Subdivision (DPS). These terms of reference are based upon the Pre-consultation meeting form dated January 20, 2022.

According to the Concept Plan, the elements envisioned for this development include:

- A total of 22 stacked townhouse blocks, with a total of 360 units.
- Proposed entrance road off First Avenue and a future roadway to the south
- Two east-west internal roadways and three north-south internal roadways.
- A total of 657 parking spaces with an addition of 4 barrier free parking spaces.
- A total of 60 bicycle parking spaces.

Please see the attached concept plan for more details.
This letter and its attachment are intended to serve as the Terms of Reference (ToR) for the TIB to support the development application.

Study Methodology for the Transportation Impact Brief

The following intersection is proposed to be analyzed as part of the scope of the study:

- Site Access and First Avenue

In order to get the traffic counts expected to be seen at the site access, we will get traffic data from:

- Quaker Road and First Avenue
- Merritt Road and Cataract Road
 Please confirm the above noted intersections are sufficient for the study.

Analysis Periods and Scenarios

The above intersections will be analyzed in the weekday a.m. and p.m. peak hours of the full build-out year (2025), and 10-years from the build out year (2035). The horizon years will be analyzed for future total traffic conditions.
Please confirm if the peak hour periods and the horizon year is sufficient for the analysis.
Background Developments

Roadway and Transit Improvements
Please provide us with the details on any roadway improvements planned within the study area network.

raffic Growth

 growth at the intersections of the study. Please confirm if this is acceptable.

Trip Generation and Distribution

 confirm if this is acceptable.

Existing traffic and data from the 2016 Transportation Tomorrow Survey (TTS) will be used to determine the trip distribution for the a.m. and p.m. periods to the proposed development.Please confirm if this is acceptable.

Analysis Procedures

Weekday a.m. and p.m. peak hours will be analyzed using Synchro 11.0 analysis software based on Highway Capacity Manual (HCM) procedures.Please confirm if this acceptable.

Summary

We request the following information for inclusion in the study, along with any comments that arise with regards to the above Terms of Reference.
Please provide:

- Confirmation that the study intersection is sufficient.
- Relevant growth rate(s) applicable to the roadways of study.
- Confirm the study horizon years are acceptable.
- Any relevant background developments and the associated traffic impact studies that are to be included in our analysis.
- Details of any planned roadway or transit improvements in the surrounding study area within the horizon years, if there are any.
- Confirmation of analysis methodology.

I hope the contents outlined in this email are acceptable.
Should you have any questions or require any further information, please feel free to contact lan Lindley or myself.
Regards,
Shaira Ahmed
Engineering Intern, Transportation
Office: 905.875.0026
Collingwood | Milton | Toronto | Bradford | Guelph

744 First Avenue
Background Development Trip Assignment

Figure 4
xx A.M. Peak Hour Traffic Volumes
(xx) P.M. Peak Hour Traffic Volumes

APPENDIX B

Site Location and Concept Plan

Legend
Approximate
Boundary

744 First Avenue

Site Location

Figure 1
Project No. 1846-6748 Date. 2024-01-17
Analyst. Aiman Khan

SITE STATISTICS
1

KEY MAP

	LEGEND
-- -	
- -	
	Bulding Settack LINE
	GARAGE SETBACK LINE
	PORCH SETTACK LINE
------	OUTLINE OF FLRBEX-OUT ABOVE
	OUTLINE Of BALCONY ABOVE
	TRAVEL LIITANCE TO FRIE ROUTE
∇	EXTERIOR DOOR LOCATON
∇	

APPENDIX C

City of Welland Offic ial Plan Excerpts

City of Welland
Official Plan

LEGEND

MTO 406 PLAN
General Map Information
DEFERRED BY
THE REGION OF NIAGARA

LEGEND MTO 406 PLAN	
General Map Information $\begin{aligned} & \text { Muncicipal } \\ & \text { Bundary }\end{aligned}$	
N	Watercour
	Regional Road No.
	y Informatio
	Expres
	Collect

әןпрәчэs
City of Welland Official Plan

Schedule E: Road Hierarch

APPENDIX

Traffic Data

Turning Movement Count (1. QUAKER RD \& FIRST AVE)																										
Start Time	N Approach FIRST AVE						E Approach QUAKER RD						S Approach FIRST AVE						W Approach QUAKER RD						$\begin{aligned} & \text { Int. Total } \\ & \text { (15 min) } \end{aligned}$	$\underset{(1 \mathrm{hr})}{\substack{\text { Int. Total }}}$
	$\begin{aligned} & \text { Right } \\ & \text { R:W } \end{aligned}$	$\begin{aligned} & \text { Thru } \\ & \text { N:S } \end{aligned}$	$\begin{aligned} & \text { Left } \\ & \mathrm{N}: \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { UTurn } \\ & \text { N:N } \end{aligned}$	$\begin{aligned} & \text { Peds } \\ & \mathrm{N}: \end{aligned}$	Approach Total	$\begin{aligned} & \text { Right } \\ & \text { E:N } \end{aligned}$	$\begin{aligned} & \text { Thru } \\ & E: W \end{aligned}$	$\begin{aligned} & \text { Left } \\ & \text { E:S } \end{aligned}$	$\underset{E: E}{\text { UTurn }}$	$\begin{aligned} & \text { Peds } \\ & \text { E: } \end{aligned}$	Approach Total	$\begin{aligned} & \text { Right } \\ & \text { int } \end{aligned}$	$\begin{gathered} \text { Thru } \\ \text { S:N } \end{gathered}$	$\begin{gathered} \text { Left } \\ s: W \end{gathered}$	$\begin{aligned} & \text { UTurn } \\ & \text { S:S } \end{aligned}$	$\begin{aligned} & \text { Peds } \\ & \text { S: } \end{aligned}$	Approach Total	$\begin{aligned} & \text { Right } \\ & \text { W:S } \end{aligned}$	$\begin{aligned} & \text { Thru } \\ & \text { W: } \end{aligned}$	$\begin{aligned} & \text { Left } \\ & W: N \end{aligned}$	$\begin{aligned} & \text { UTurn } \\ & \text { W:W } \end{aligned}$	$\begin{aligned} & \text { Peds } \\ & \mathrm{W} \end{aligned}$	Approach Total		
06:00:00	0	0	1	0	0	1	1	5	4	0	0	10	13	14	1	0	0	28	1	6	1	0	0	8	47	
06:15:00	1	0	1	0	0	2	0	3	2	0	0	5	8	17	1	0	0	26	2	16	0	0	0	18	51	
06:30:00	1	2	0	0	0	3	0	12	5	0	0	17	14	15	4	0	0	33	0	18	1	0	0	19	72	
06:45:00	2	4	0	0	0	6	0	11	9	0	0	20	${ }^{13}$	22	4	0	0	39	3	16	1	0	0	20	85	255
07:00:00	0	3	0	0	0	3	1	8	9	0	0	18	25	18	6	0	0	49	2	25	3	0	0	30	100	308
07:15:00	5	11	1	0	0	17	2	9	12	0	0	23	20	31	3	0	0	54	2	${ }^{23}$	6	0	0	31	125	382
07:30:00	2	12	0	0	0	14	2	19	16	0	0	37	33	30	4	0	0	67	5	39	4	0	0	48	166	476
07:45:00	4	29	0	0	0	33	1	22	25	0	0	48	41	29	9	0	0	79	8	37	4	0	0	49	209	600
08:00:00	6	44	1	0	0	51	1	26	31	0	0	58	37	35	11	0	0	83	5	41	4	0	0	50	242	742
08:15:00	8	39	1	0	0	48	0	31	39	0	0	70	32	46	8	0	0	86	8	44	8	0	0	60	264	881
08:30:00	8	37	3	0	0	48	2	42	29	0	0	73	37	32	17	0	2	86	9	45	4	0	0	58	265	980
08:45:00	4	26	2	0	0	32	5	40	${ }^{27}$	0	0	72	22	30	12	0	0	64	11	48	3	0	0	62	230	1001
09:00:00	8	51	0	0	0	59	0	46	35	0	0	81	${ }^{23}$	33	12	0	11	68	24	62	6	0	0	92	300	1059
09:15:00	3	51	2	0	0	56	4	24	50	0	0	78	30	24	8	0	0	62	11	37	4	0	0	52	248	1043
09:30:00	5	34	3	0	0	42	0	22	24	0	0	46	20	22	6	0	0	48	9	43	5	0	0	57	193	971
09:45:00	3	${ }^{24}$	4	0	0	31	1	22	22	0	0	45	25	20	4	0	0	49	2	47	5	0	0	54	179	920
-"break ${ }^{\text {a }}$																										
15:00:00	10	38	5	0	0	53	1	51	22	0	0	74	32	28	6	0	2	66	12	59	3	0	0	74	267	
15:15:00	15	36	2	0	0	53	1	50	28	0	0	79	28	29	16	0	2	${ }^{73}$	15	43	2	0	0	60	265	
15:30:00	6	35	2	0	0	43	2	52	21	0	0	75	41	32	13	0	6	86	19	${ }^{63}$	8	0	0	90	294	
15:45:00	6	49	2	0	0	57	6	42	31	0	0	79	30	35	8	0	1	${ }^{73}$	7	59	6	0	0	72	281	1107
16:00:00	8	40	3	0	0	51	3	48	32	0	0	83	42	40	5	0	0	87	7	61	4	0	0	72	293	1133
16:15:00	15	47	4	0	0	66	3	60	26	0	0	89	48	29	5	0	0	82	11	61	3	0	0	75	312	1180
16:30:00	6	57	4	0	0	67	3	53	19	0	0	75	50	43	8	0	0	101	8	52	2	0	0	62	305	1191
16:45:00	9	55	2	0	0	66	3	50	20	0	0	73	31	34	5	0	2	70	10	51	4	0	2	65	274	1184
17:00:00	10	29	5	0	0	44	2	40	37	0	0	79	${ }^{23}$	25	11	0	0	59	15	43	3	0	0	61	243	1134
17:15:00	6	51	3	0	0	60	3	51	36	0	0	90	16	16	7	0	0	39	11	50	2	0	0	${ }^{63}$	252	1074
17:30:00	4	43	3	0	0	50	0	42	26	0	0	68	24	16	4	0	0	44	4	39	2	0	0	45	207	976
17:45:00	2	31	1	0	0	34	5	51	28	0	0	84	19	14	8	0	0	41	6	39	3	0	0	48	207	909
18:00:00	2	16	2	0	0	20	1	48	28	0	0	77	21	17	4	0	0	42	3	38	0	0	0	41	180	846
18:15:00	3	31	3	0	0	37	1	38	24	0	0	63	27	9	5	0	0	41	6	33	2	0	0	41	182	776
18:30:00	2	15	0	0	0	17	1	46	22	0	0	69	19	15	2	0	0	36	7	35	1	0	0	43	165	734
18:45:00	1	13	1	0	0	15	0	33	22	0	0	55	18	12	5	0	0	35	7	35	1	0	0	43	148	675
Grand Total	165	953	61	0	0	1179	55	1097	761	0	0	1913	862	812	222	0	26	1896	250	1308	105	0	2	1663	6651	-
Approach\%	14\%	80.8\%	5.2\%	0\%		-	2.9\%	57.3\%	39.8\%	0\%		-	45.5\%	42.8\%	11.7\%	0\%		-	15\%	78.7\%	6.3\%	0\%		-	-	\cdot
Totals \%	2.5\%	14.3\%	0.9\%	0\%		17.7\%	0.8\%	16.5\%	11.4\%	0\%		28.8\%	13\%	12.2\%	3.3\%	0\%		28.5\%	3.8\%	19.7\%	1.6\%	0\%		25\%	-	-
Heavy	5	10	2	0		-	1	44	59	0		-	37	4	7	0		-	15	43	2	0		-	-	-
Heavy \%	3%	1\%	3.3\%	0\%		-	1.8\%	4\%	7.8\%	0\%		-	4.3\%	0.5\%	3.2\%	0\%		\cdot	6\%	3.3\%	1.9\%	0\%		-	\cdot	-
Bicycles	-	-	-	-		-	-	-	-	-			-		-	-		-	-	-	-	-		-	\cdot	-
Bicycle \%	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-

Peak Hour: 08:15 AM-09:15 AM Weather: Broken Clouds ($2.21{ }^{\circ} \mathrm{C}$)																									
Start Time	N Approach FIRST AVE						E Approach QUAKER RD						S Approach FIRST AVE						W Approach QUAKER RD						$\begin{aligned} & \text { Int. Total } \\ & \text { (15 min) } \end{aligned}$
	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	
08:15:00	8	39	1	0	0	48	0	31	39	0	0	70	32	46	8	0	0	86	8	44	8	0	0	60	264
08:30:00	8	37	3	0	0	48	2	42	29	0	0	${ }^{73}$	37	32	17	0	2	86	9	45	4	0	0	58	265
08:45:00	4	26	2	0	0	32	5	40	27	0	0	72	22	30	12	0	0	64	11	48	3	0	0	62	230
09:00:00	8	51	0	0	0	59	0	46	35	0	0	81	${ }^{23}$	33	12	0	11	68	24	62	6	0	0	92	300
Grand Total	28	153	6	0	0	187	7	159	130	0	0	296	114	141	49	0	13	304	52	199	21	0	0	272	1059
Approach\%	15\%	81.8\%	3.2\%	0\%		-	2.4\%	53.7\%	43.9\%	0\%		-	37.5\%	46.4\%	16.1\%	0\%		-	19.1\%	73.2\%	7.7\%	0\%		-	-
Totals \%	2.6\%	14.4\%	0.6\%	0\%		17.7\%	0.7\%	15\%	12.3\%	0\%		28\%	10.8\%	13.3\%	4.6\%	0\%		28.7\%	4.9\%	18.8\%	2\%	0\%		25.7\%	-
PHF	0.88	0.75	0.5	0		0.79	0.35	0.86	0.83	0		0.91	0.77	0.77	0.72	0		0.88	0.54	0.8	0.66	0		0.74	\cdot
Heavy	2	2	2	0		6	1	20	13	0		34	5	1	${ }^{-}$	0		${ }_{9}$	${ }_{9}$	14	0	0		${ }_{23}^{-7}$	-
Heavy \%	7.1\%	1.3\%	33.3\%	0\%		3.2\%	14.3\%	12.6\%	10\%	0\%		11.5\%	4.4\%	0.7\%	6.1\%	0\%		3\%	17.3\%	7\%	0\%	0\%		8.5\%	-
Lights	26	${ }_{151}$	4	0		181	6	${ }_{139}$	117	0		262	109	${ }^{-740}$	46	0		295	$4{ }^{-7}$	185	21	0		249	\cdot
Lights \%	92.9\%	98.7\%	66.7\%	0\%		96.8\%	85.7\%	87.4\%	90\%	0\%		88.5\%	95.6\%	99.3\%	93.9\%	0\%		97\%	82.7\%	93\%	100\%	0\%		91.5\%	-
Single-Unit Trucks	0	1	0	0		1	0	11	9	0		20	0	0	0	0		0	0	5	0	0		5	-
Single-Unit Trucks \%	0\%	0.7\%	0\%	0\%		0.5\%	0\%	6.9\%	6.9\%	0\%		6.8\%	0\%	0\%	0\%	0\%		0\%	0\%	2.5\%	0\%	0\%		1.8\%	-
Buses	2	1	2	0		5	1	9	4	0		14	5	1	3	0		9	9	9	0	0		18	-
Buses \%	7.1\%	0.7\%	33.3\%	0\%		2.7\%	14.3\%	5.7\%	3.1\%	0\%		4.7\%	4.4\%	0.7\%	6.1\%	0\%		3\%	17.3\%	4.5\%	0\%	0\%		6.6\%	-
Articulated Trucks	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	-
Articulated Trucks \%	0\%	0\%	0\%	0\%		0\%	0\%	0\%	0\%	0\%		0\%	0\%	0\%	0\%	0\%		0\%	0\%	0\%	0\%	0\%		0\%	-
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	13	-	-	-	-	-	0	-	-
Pedestrians\%	-	-	-	-	0\%		-	-	-	\cdot	0\%		\cdot	\cdot	-	-	100\%		-	-	-	-	0\%		.

Peak Hour: 03:45 PM - 04:45 PM Weather: Overcast Clouds (5.29 ${ }^{\circ} \mathrm{C}$)																									
Start Time	N Approach FIRST AVE						E Approach QUAKER RD						S Approach FIRST AVE						W Approach QUAKER RD						$\begin{aligned} & \text { Int. Total } \\ & \text { (15 min) } \end{aligned}$
	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTum	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	
15:45:00	6	49	2	0	0	57	6	42	31	0	0	79	30	35	8	0	1	73	7	59	6	0	0	72	281
16:00:00	8	40	3	0	0	51	3	48	32	0	0	83	42	40	5	0	0	87	7	61	4	0	0	72	293
16:15:00	15	47	4	0	0	66	3	60	26	0	0	89	48	29	5	0	0	82	11	61	3	0	0	75	312
16:30:00	6	57	4	0	0	67	3	53	19	0	0	75	50	${ }^{43}$	8	0	0	101	8	52	2	0	0	62	305
Grand Total	35	193	${ }^{13}$	0	0	241	15	203	108	0	0	326	170	147	26	0	1	343	33	${ }^{233}$	15	0	0	281	1191
Approach\%	14.5\%	80.1\%	5.4\%	0\%		-	4.6\%	62.3\%	33.1\%	0\%		-	49.6\%	42.9\%	7.6\%	0\%		-	11.7\%	82.9\%	5.3\%	0\%		-	-
Totals \%	2.9\%	16.2\%	1.1\%	0\%		20.2\%	1.3\%	17\%	9.1\%	0\%		27.4\%	14.3\%	12.3\%	2.2\%	0\%		28.8\%	2.8\%	19.6\%	1.3\%	0\%		23.6\%	-
PHF	0.58	0.85	0.81	0		0.9	0.63	0.85	0.84	0		0.92	0.85	0.85	0.81	0		0.85	0.75	0.95	0.63	0		0.94	.
Heavy	1	4	0	0		5	0	1	9	0		10	4	1	0	0		5	0	4	0	0		4	\cdot
Heavy \%	2.9\%	2.1\%	0\%	0\%		2.1\%	0\%	0.5\%	8.3\%	0\%		3.1\%	2.4\%	0.7\%	0\%	0\%		1.5\%	0\%	1.7\%	0\%	0\%		1.4\%	-
Lights	34	189	${ }_{13}$	${ }_{0}$		236	${ }_{15}$	202	99	0		316	166	146	26	${ }_{0}$		338	${ }_{33}$	229	15	0		277	-
Lights \%	97.1\%	97.9\%	100\%	0\%		97.9\%	100\%	99.5\%	91.7\%	0\%		96.9\%	97.6\%	99.3\%	100\%	0\%		98.5\%	100\%	98.3\%	100\%	0\%		98.6\%	\cdot
Single-Unit Trucks	0	1	0	0		1	0	1	0	0		1	0	0	0	0		0	0	2	0	0		2	-
Single-Unit Trucks \%	0\%	0.5\%	0\%	0\%		0.4\%	0\%	0.5\%	0\%	0\%		0.3\%	0\%	0\%	0\%	0\%		0\%	0\%	0.9\%	0\%	0\%		0.7\%	-
Buses	1	3	0	0		4	0	0	9	0		9	4	1	0	0		5	0	2	0	0		2	-
Buses \%	2.9\%	1.6\%	0\%	0\%		1.7\%	0\%	0\%	8.3\%	0\%		2.8\%	2.4\%	0.7\%	0\%	0\%		1.5\%	0\%	0.9\%	0\%	0\%		0.7\%	-
Articulated Trucks	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	-
Articulated Trucks \%	0\%	0\%	0\%	0\%		0\%	0\%	0\%	0\%	0\%		0\%	0\%	0\%	0\%	0\%		0\%	0\%	0\%	0\%	0\%		0\%	-
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	1	-	-	-	-	-	0	-	-
Pedestrians\%	-	-	-	-	0\%		-	-	-	-	0\%		-	-	-	-	100\%		-	-	-	-	0\%		-

Peak Hour: 03:45 PM - 04:45 PM Weather: Overcast Clouds (5.29 $\left.{ }^{\circ} \mathrm{C}\right)$

Turning Movement Count (2 . MERRITT RD \& CATARACT RD)

Start Time	N Approach EApproach CATARACT RD MERRITT R												S Approach W Approach CATARACT RD WEST SIDEWAL									Int. Total (15 min)	Int. Total (1 hr)
	$\begin{aligned} & \text { Right } \\ & N: W \end{aligned}$	$\begin{aligned} & \text { Thru } \\ & \text { N: } \end{aligned}$	$\begin{aligned} & \text { Left } \\ & \mathrm{N}: \mathrm{E} \end{aligned}$	UTurn $\mathrm{N}: \mathrm{N}$	Peds $\mathrm{N}:$	Approach Total	Right E:N	$\begin{aligned} & \text { Thru } \\ & \mathrm{E}: \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { Left } \\ & \mathrm{E}: \mathrm{S} \end{aligned}$	$\begin{aligned} & \text { UTurn } \\ & \text { E:E } \end{aligned}$	$\begin{aligned} & \text { Peds } \\ & \text { E: } \end{aligned}$	Approach Total	$\begin{aligned} & \text { Right } \\ & \text { S:E } \end{aligned}$	$\begin{aligned} & \text { Thru } \\ & \text { S:N } \end{aligned}$	$\begin{aligned} & \text { Left } \\ & \mathrm{S}: \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { UTurn } \\ & \text { S:S } \end{aligned}$	$\begin{aligned} & \text { Peds } \\ & \text { S: } \end{aligned}$	Approach Total	UTurn W:W	$\begin{aligned} & \text { Peds } \\ & \text { W: } \end{aligned}$	Approach Total		
06:00:00	0	1	0	0	0	1	0	0	0	0	0	0	1	14	0	0	0	15	0	0	0	16	
06:15:00	0	1	0	0	0	1	0	0	1	0	0	1	2	15	0	0	0	17	0	0	0	19	
06:30:00	0	5	0	0	0	5	0	0	0	0	0	0	5	12	0	0	0	17	0	0	0	22	
06:45:00	0	3	2	0	0	5	0	0	3	0	0	3	1	22	0	0	0	23	0	0	0	31	88
07:00:00	0	4	1	0	0	5	0	0	1	0	0	1	4	15	0	0	0	19	0	0	0	25	97
07:15:00	0	11	1	0	0	12	0	0	3	0	0	3	6	32	0	0	0	38	0	0	0	53	131
07:30:00	0	12	2	0	0	14	1	0	2	0	0	3	10	29	0	0	0	39	0	0	0	56	165
07:45:00	0	22	3	0	0	25	4	0	18	0	0	22	5	27	0	0	0	32	0	0	0	79	213
08:00:00	0	32	0	0	0	32	0	0	20	0	0	20	9	30	0	0	0	39	0	0	0	91	279
08:15:00	0	27	1	0	0	28	3	0	21	0	0	24	8	46	0	0	0	54	0	0	0	106	332
08:30:00	0	27	0	0	0	27	2	0	14	0	0	16	7	32	0	0	0	39	0	0	0	82	358
08:45:00	0	19	1	0	0	20	1	0	12	0	0	13	4	30	0	0	0	34	0	0	0	67	346
09:00:00	0	38	1	0	0	39	0	0	27	0	0	27	9	28	0	1	0	38	0	0	0	104	359
09:15:00	0	33	1	0	0	34	1	0	20	0	0	21	8	29	0	0	0	37	0	0	0	92	345
09:30:00	0	14	5	0	0	19	0	0	23	0	0	23	4	21	0	0	0	25	0	0	0	67	330
09:45:00	0	21	1	0	0	22	2	0	11	0	0	13	6	21	0	0	0	27	0	0	0	62	325

15:00:00	0	33	0	0	0	33	3	0	21	0	0	24	11	20	0	0	0	31	0	0	0	88	
15:15:00	0	31	3	0	0	34	0	0	23	0	0	23	5	27	0	0	0	32	0	0	0	89	
15:30:00	0	36	4	0	0	40	5	0	8	0	0	13	10	27	0	0	0	37	0	0	0	90	
15:45:00	0	37	2	0	1	39	2	0	20	0	0	22	11	37	0	0	0	48	0	0	0	109	376
16:00:00	0	41	6	0	0	47	2	0	11	0	0	13	13	32	0	0	0	45	0	0	0	105	393
16:15:00	0	52	1	0	0	53	2	0	13	0	0	15	6	31	0	0	0	37	0	0	0	105	409
16:30:00	0	57	0	0	0	57	2	0	9	0	0	11	14	37	0	0	0	51	0	0	0	119	438
16:45:00	0	60	2	0	0	62	3	0	8	0	0	11	7	32	0	0	0	39	0	0	0	112	441
17:00:00	0	32	4	0	0	36	1	0	13	0	0	14	5	26	0	0	0	31	0	0	0	81	417
17:15:00	0	51	3	0	0	54	1	0	11	0	0	12	8	15	0	0	0	23	0	0	0	89	401
17:30:00	0	37	1	0	0	38	1	0	11	0	0	12	2	15	0	0	0	17	0	0	0	67	349
17:45:00	0	24	1	0	0	25	0	0	11	0	0	11	2	21	0	0	0	23	0	0	0	59	296
18:00:00	0	10	1	0	0	11	1	0	7	0	0	8	1	16	0	0	0	17	0	0	0	36	251
18:15:00	0	29	0	0	0	29	1	0	9	0	0	10	3	9	0	0	0	12	0	0	0	51	213
18:30:00	0	13	0	0	0	13	0	0	4	0	0	4	4	12	0	0	0	16	0	0	0	33	179
18:45:00	0	12	0	0	0	12	2	0	3	0	0	5	1	14	0	0	0	15	0	0	0	32	152
Grand Total	0	825	47	0	1	872	40	0	358	0	0	398	192	774	0	1	0	967	0	0	0	2237	-
Approach\%	0\%	94.6\%	5.4\%	0\%		-	10.1\%	0\%	899\%	0\%		-	19.9\%	80\%	0\%	0.1\%		-	0\%		-	-	-
Totals \%	0\%	36.9\%	2.1\%	0\%		39\%	1.8\%	0\%	16\%	0\%		17.8\%	8.6\%	34.6\%	0\%	0\%		43.2\%	0\%		0\%	-	-
Heavy	0	14	2	0		-	3	0	4	0		-	3	4	0	0		-	0		-	\cdot	-
Heavy \%	0\%	1.7\%	4.3\%	0\%		\cdot	7.5\%	0\%	1.1\%	0\%		\cdot	1.6\%	0.5\%	0\%	0\%		-	0\%		\cdot	\cdot	-
Bicycles	-	-		-		-	-	-	-	-		\cdot	-	-	-	-		-	-		-	-	-
Bicycle \%	-	.	.	.		-	.	.	-	-		.	-	-	.	-		-	.		-	-	-

Peak Hour: 08:15 AM-09:15 AM Weather: Broken Clouds (2.21																						
Start Time	Right	Thru	N Approach CATARACT RD			Approach Total	Right	Thru	Left	E Approach MERRITT RD		Approach Total	Right	Thru	S Approach CATARACT RD			Approach Total	UTurn	W Approach WEST SIDEWALK		Int. Total (15 min)
			Left	UTurn	Peds					UTurn	Peds				Left	UTurn	Peds			Peds	Approach Total	
08:15:00	0	27	1	0	0	28	3	0	21	0	0	24	8	46	0	0	0	54	0	0	0	106
08:30:00	0	27	0	0	0	27	2	0	14	0	0	16	7	32	0	0	0	39	0	0	0	82
08:45:00	0	19	1	0	0	20	1	0	12	0	0	13	4	30	0	0	0	34	0	0	0	67
09:00:00	0	38	1	0	0	39	0	0	27	0	0	27	9	28	0	1	0	38	0	0	0	104
Grand Total	0	111	3	0	0	114	6	0	74	0	0	80	28	136	0	1	0	165	0	0	0	359
Approach\%	0\%	97.4\%	2.6\%	0\%		-	7.5\%	0\%	92.5\%	0\%		-	17\%	82.4\%	0\%	0.6\%		-	0\%		-	-
Totals \%	0\%	30.9\%	0.8\%	0\%		31.8\%	1.7\%	0\%	20.6\%	0\%		22.3\%	7.8\%	37.9\%	0\%	0.3\%		46\%	0\%		0\%	-
PHF	0	0.73	0.75	0		0.73	0.5	0	0.69	0		0.74	0.78	0.74	0	0.25		0.76	0		0	-
Heavy	0	3	0	0		3	0	0	2	0		2	-1	1	0	0		2	0		0	-
Heavy \%	0\%	2.7\%	0\%	0\%		2.6\%	0\%	0\%	2.7\%	0\%		2.5\%	3.6\%	0.7\%	0\%	0\%		1.2\%	0\%		0\%	-
Lights	0	108	${ }^{-}$	0		111	6	0	72	0		78	27	135	0	1		163	0		0	-
Lights \%	0\%	97.3\%	100\%	0\%		97.4\%	100\%	0\%	97.3\%	0\%		97.5\%	96.4\%	99.3\%	0\%	100\%		98.8\%	0\%		0\%	-
Single-Unit Trucks	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0		0	-
Single-Unit Trucks \%	0\%	0\%	0\%	0\%		0\%	0\%	0\%	0\%	0\%		0\%	0\%	0\%	0\%	0\%		0\%	0\%		0\%	-
Buses	0	3	0	0		3	0	0	2	0		2	1	1	0	0		2	0		0	\cdot
Buses \%	0\%	2.7\%	0\%	0\%		2.6\%	0\%	0\%	2.7\%	0\%		2.5\%	3.6\%	0.7\%	0\%	0\%		1.2\%	0\%		0\%	-
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	0	-	-
Pedestrians\%	-	-	-	-	0\%		-	-	-	-	0\%		-	-	-	-	0\%		-	0\%		-

Peak Hour: 04:00 PM - 05:00 PM Weather: Overcast Clouds $\left(5.29{ }^{\circ} \mathrm{C}\right)$

Start Time	N Approach CATARACT RD						E Approach MERRITT RD						S Approach CATARACT RD						w Approach WEST SIDEWALK			Int. Total$(15 \mathrm{~min})$
	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	UTurn	Peds	Approach Total	
16:00:00	0	41	6	0	0	47	2	0	11	0	0	13	13	32	0	0	0	45	0	0	0	105
16:15:00	0	52	1	0	0	53	2	0	13	0	0	15	6	31	0	0	0	37	0	0	0	105
16:30:00	0	57	0	0	0	57	2	0	9	0	0	11	14	37	0	0	0	51	0	0	0	119
16:45:00	0	60	2	0	0	62	3	0	8	0	0	11	7	32	0	0	0	39	0	0	0	112
Grand Total	0	210	9	0	0	219	9	0	41	0	0	50	40	132	0	0	0	172	0	0	0	441
Approach\%	0\%	95.9\%	4.1\%	0\%		-	18\%	0\%	82\%	0\%		-	23.3\%	76.7\%	0\%	0\%		-	0\%		\cdot	\cdot
Totals \%	0\%	47.6\%	2\%	0\%		49.7\%	2\%	0\%	9.3\%	0\%		11.3\%	9.1\%	29.9\%	0\%	0\%		39\%	0\%		0\%	-
PHF	0	0.88	0.38	0		0.88	0.75	0	0.79	0		0.83	0.71	0.89	0	0		0.84	0		0	-
Heavy	0	2	0	0		2	0	0	0	0		0	0	1	0	0		1	0		0	-
Heavy \%	0\%	1\%	0\%	0\%		0.9\%	0\%	0\%	0\%	0\%		0\%	0\%	0.8\%	0\%	0\%		0.6\%	0\%		0\%	-
Lights	0	208	9	0		217	9	0	41	0		50	40	131	0	0		171	0		0	-
Lights \%	0\%	99\%	100\%	0\%		99.1\%	100\%	0\%	100\%	0\%		100\%	100\%	99.2\%	0\%	0\%		99.4\%	0\%		0\%	-
Single-Unit Trucks	0	1	0	0		1	0	0	0	0		0	0	0	0	0		0	0		0	-
Single-Unit Trucks \%	0\%	0.5\%	0\%	0\%		0.5\%	0\%	0\%	0\%	0\%		0\%	0\%	0\%	0\%	0\%		0\%	0\%		0\%	\cdot
Buses	0	1	0	0		1	0	0	0	0		0	0	1	0	0		1	0		0	-
Buses \%	0\%	0.5\%	0\%	0\%		0.5\%	0\%	0\%	0\%	0\%		0\%	0\%	0.8\%	0\%	0\%		0.6\%	0\%		0\%	-
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	0	-	-
Pedestrians\%	-	-	-	-	0\%		-	-	-	-	0\%		-	-	-	-	0\%		-	0\%		-

Peak Hour: 08:15 AM-09:15 AM Weather: Broken Clouds (2.21${ }^{\circ} \mathrm{C}$

Peak Hour: 04:00 PM - 05:00 PM Weather: Overcast Clouds $\left(5.29^{\circ} \mathrm{C}\right)$

APPENDIX E

Level of Service Definitions

Level of Service Definitions

Two-Way Stop C ontrolled Intersections

Level of Senvice	Control Delay per Vehicle (seconds)	Interpretation
A	≤ 10	EXCEUENT. Large and frequent gaps in traffic on the main roadway. Queuing on the minor street is rare.
B	>10 and ≤ 15	VERY GOOD. Many gaps exist in traffic on the main roadway. Queuing on the minor street is minimal.
C	>15 and ≤ 25	GOOD. Fewergaps exist in traffic on the main roadway. Delay on minorapproach becomesmore notic eable.
D	>25 and ≤ 35	FAIR. Infrequent and shorter gaps in traffic on the main roadway. Queue lengths develop on the minor street.
E	>35 and ≤ 50	POOR. Very infrequent gaps in traffic on the main roadway. Queue lengths become noticeable.
F	>50	UNSATISFACTORY. Very few gaps in traffic on the main roadway. Excessive delay with signific ant queue lengths on the minor street.

Adapted from Highway Capacity Manual 2000, Transportation Research Board

APPENDIX F

Northwest Welland Secondary Plan Transportation Assessment Preferred Plan Excerpts

City of Welland

Northwest Welland Secondary Plan
Transportation Assessment
Preferred Plan

MAY 2020

Figure 2-6: Base Year (2018) Background Traffic Peak Hour Turning Movement Volumes

Figure 5-2: Future (2031) Peak Hour Turning Movement Volumes - Collector Roads

APPENDIX G

ITE Trip Generation $11^{\text {th }}$ Edition

Land Use: 220 Multifamily Housing (Low-Rise)

Description

Low-rise multifamily housing includes apartments, townhouses, and condominiums located within the same building with at least three other dwelling units and that have two or three floors (levels). Various configurations fit this description, including walkup apartment, mansion apartment, and stacked townhouse.

- A walkup apartment typically is two or three floors in height with dwelling units that are accessed by a single or multiple entrances with stairways and hallways.
- A mansion apartment is a single structure that contains several apartments within what appears to be a single-family dwelling unit.
- A fourplex is a single two-story structure with two matching dwelling units on the ground and second floors. Access to the individual units is typically internal to the structure and provided through a central entry and stairway.
- A stacked townhouse is designed to match the external appearance of a townhouse. But, unlike a townhouse dwelling unit that only shares walls with an adjoining unit, the stacked townhouse units share both floors and walls. Access to the individual units is typically internal to the structure and provided through a central entry and stairway.

Multifamily housing (mid-rise) (Land Use 221), multifamily housing (high-rise) (Land Use 222), affordable housing (Land Use 223), and off-campus student apartment (low-rise) (Land Use 225) are related land uses.

Land Use Subcategory

Data are presented for two subcategories for this land use: (1) not close to rail transit and (2) close to rail transit. A site is considered close to rail transit if the walking distance between the residential site entrance and the closest rail transit station entrance is $1 / 2$ mile or less.

Additional Data

For the three sites for which both the number of residents and the number of occupied dwelling units were available, there were an average of 2.72 residents per occupied dwelling unit.

For the two sites for which the numbers of both total dwelling units and occupied dwelling units were available, an average of 96.2 percent of the total dwelling units were occupied.

The technical appendices provide supporting information on time-of-day distributions for this land use. The appendices can be accessed through either the ITETripGen web app or the trip
generation resource page on the ITE website (https://www.ite.org/technical-resources/topics/trip-and-parking-generation/).

For the three sites for which data were provided for both occupied dwelling units and residents, there was an average of 2.72 residents per occupied dwelling unit.

It is expected that the number of bedrooms and number of residents are likely correlated to the trips generated by a residential site. To assist in future analysis, trip generation studies of all multifamily housing should attempt to obtain information on occupancy rate and on the mix of residential unit sizes (i.e., number of units by number of bedrooms at the site complex).

The sites were surveyed in the 1980s, the 1990s, the 2000s, the 2010s, and the 2020s in British Columbia (CAN), California, Delaware, Florida, Georgia, Illinois, Indiana, Maine, Maryland, Massachusetts, Minnesota, New Jersey, Ontario (CAN), Oregon, Pennsylvania, South Carolina, South Dakota, Tennessee, Texas, Utah, and Washington.

Source Numbers

188, 204, 237, 300, 305, 306, 320, 321, 357, 390, 412, 525, 530, 579, 583, 638, 864, 866, 896, 901, $903,904,936,939,944,946,947,948,963,964,966,967,1012,1013,1014,1036,1047,1056$, 1071, 1076

Multifamily Housing (Low-Rise) Not Close to Rail Transit (220)

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday

Setting/Location: General Urban/Suburban

Number of Studies: 22
Avg. Num. of Dwelling Units: 229
Directional Distribution: 50\% entering, 50\% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
6.74	$2.46-12.50$	1.79

Data Plot and Equation

Multifamily Housing (Low-Rise) Not Close to Rail Transit (220)

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 49
Avg. Num. of Dwelling Units: 249
Directional Distribution: 24\% entering, 76% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.40	$0.13-0.73$	0.12

Data Plot and Equation

Multifamily Housing (Low-Rise) Not Close to Rail Transit (220)

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.
Setting/Location: General Urban/Suburban
Number of Studies: 59
Avg. Num. of Dwelling Units: 241
Directional Distribution: 63\% entering, 37\% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.51	$0.08-1.04$	0.15

Data Plot and Equation

Multifamily Housing (Low-Rise) Not Close to Rail Transit (220)

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban

Number of Studies: 40
Avg. Num. of Dwelling Units: 234
Directional Distribution: 24\% entering, 76\% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.47	$0.25-0.98$	0.16

Data Plot and Equation

Multifamily Housing (Low-Rise) Not Close to Rail Transit (220)

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban

Number of Studies: 38
Avg. Num. of Dwelling Units: 231
Directional Distribution: 62\% entering, 38\% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.57	$0.25-1.26$	0.20

Data Plot and Equation

Multifamily Housing (Low-Rise) Not Close to Rail Transit (220)

Vehicle Trip Ends vs: Dwelling Units
On a: Saturday

Setting/Location: General Urban/Suburban

Number of Studies: 1
Avg. Num. of Dwelling Units: 282
Directional Distribution: 50\% entering, 50\% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
4.55	$4.55-4.55$	$* * *$

Data Plot and Equation
Caution - Small Sample Size

Multifamily Housing (Low-Rise) Not Close to Rail Transit (220)

Vehicle Trip Ends vs: Dwelling Units
On a: Saturday, Peak Hour of Generator

Setting/Location: General Urban/Suburban

Number of Studies: 1
Avg. Num. of Dwelling Units: 282
Directional Distribution: Not Available
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.41	$0.41-0.41$	${ }^{* *}$

Data Plot and Equation
Caution - Small Sample Size

Multifamily Housing (Low-Rise) Not Close to Rail Transit (220)

Vehicle Trip Ends vs: Dwelling Units
On a: Sunday

Setting/Location: General Urban/Suburban

Number of Studies: 1
Avg. Num. of Dwelling Units: 282
Directional Distribution: 50\% entering, 50\% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
3.86	$3.86-3.86$	$* * *$

Data Plot and Equation
Caution - Small Sample Size

Multifamily Housing (Low-Rise) Not Close to Rail Transit (220)

Vehicle Trip Ends vs: Dwelling Units
On a: Sunday, Peak Hour of Generator

Setting/Location: General Urban/Suburban

Number of Studies: 1
Avg. Num. of Dwelling Units: 282
Directional Distribution: Not Available
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.36	$0.36-0.36$	$* * *$

Data Plot and Equation

Multifamily Housing (Low-Rise) Not Close to Rail Transit (220)

Vehicle Trip Ends vs: Residents
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. Num. of Residents: 177
Directional Distribution: 50\% entering, 50\% exiting

Vehicle Trip Generation per Resident

Average Rate	Range of Rates	Standard Deviation
1.86	$1.86-1.86$	${ }^{* *}$

Data Plot and Equation
Caution - Small Sample Size

Multifamily Housing (Low-Rise) Not Close to Rail Transit (220)

Vehicle Trip Ends vs: Residents
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 9
Avg. Num. of Residents: 494
Directional Distribution: 17\% entering, 83\% exiting

Vehicle Trip Generation per Resident

Average Rate	Range of Rates	Standard Deviation
0.26	$0.19-0.52$	0.08

Data Plot and Equation

Multifamily Housing (Low-Rise) Not Close to Rail Transit (220)

Vehicle Trip Ends vs: Residents
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban	
Number of Studies: 9	
Avg. Num. of Residents: 494	
Directional Distribution: 66\% entering, 34% exiting	

Vehicle Trip Generation per Resident

Data Plot and Equation

Multifamily Housing (Low-Rise) Not Close to Rail Transit (220)

Walk+Bike+Transit Trip Ends vs: Dwelling Units

On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 8
Avg. Num. of Dwelling Units: 269
Directional Distribution: 43\% entering, 57% exiting
Walk+Bike+Transit Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.03	$0.00-0.19$	0.04

Data Plot and Equation

Multifamily Housing (Low-Rise) Not Close to Rail Transit (220)

Walk+Bike+Transit Trip Ends vs: Dwelling Units

On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 10
Avg. Num. of Dwelling Units: 256
Directional Distribution: 50\% entering, 50\% exiting
Walk+Bike+Transit Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.03	$0.00-0.33$	0.05

Data Plot and Equation

Multifamily Housing (Low-Rise) Close to Rail Transit (220)

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday

Setting/Location: General Urban/Suburban

Number of Studies: 9
Avg. Num. of Dwelling Units: 389
Directional Distribution: 50% entering, 50% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
4.72	$2.46-6.34$	1.27

Data Plot and Equation

Multifamily Housing (Low-Rise) Close to Rail Transit (220)

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 1
Avg. Num. of Dwelling Units: 374
Directional Distribution: 29\% entering, 71\% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.38	$0.38-0.38$	$* * *$

Data Plot and Equation
Caution - Small Sample Size

Multifamily Housing (Low-Rise) Close to Rail Transit (220)

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 1
Avg. Num. of Dwelling Units: 374
Directional Distribution: 60\% entering, 40\% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.61	$0.61-0.61$	$* * *$

Data Plot and Equation
Caution - Small Sample Size

Multifamily Housing (Low-Rise) Close to Rail Transit (220)

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban

Number of Studies: 1
Avg. Num. of Dwelling Units: 374
Directional Distribution: 29\% entering, 71% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.38	$0.38-0.38$	$* * *$

Data Plot and Equation

Multifamily Housing (Low-Rise) Close to Rail Transit (220)

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday, PM Peak Hour of Generator

Setting/Location: General Urban/Suburban

Number of Studies: 1
Avg. Num. of Dwelling Units: 374
Directional Distribution: 60\% entering, 40\% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.61	$0.61-0.61$	$* * *$

Data Plot and Equation
Caution - Small Sample Size

APPENDIX H

Transportation Tomorrow Survey Results

Cross Tabulation Query Form - Trip - 2016 v1.1

Row: 2006 GTA zone of origin - gta06_orig
Column: 2006 GTA zone of destination - gta06_dest

Filters:
(2006 GTA zone of destination - gta06_dest In 6259
and
Start time of trip - start_time In 0630-0930
and
Trip purpose of destination - purp_dest $\ln \mathrm{H}$,)

Trip 2016
Table:
,6259
6262,9

Mon Jan 152024 10:57:12 GMT-0500 (Eastern Standard Time) - Run Time: 2474ms

Cross Tabulation Query Form - Trip - 2016 v1.1

Row: 2006 GTA zone of destination - gta06_dest
Column: 2006 GTA zone of origin - gta06_orig

Filters:
(2006 GTA zone of origin - gta06_orig In 6259
and
Start time of trip - start_time In 0630-0930
and
Trip purpose of origin - purp_orig $\ln \mathrm{H}$,)

Trip 2016
Table:
,6259
4002,18
5028,10
6026,38
6039,10
6069,11
6094,7
6096,18

6126,18
6127,23
6136,10
6146,18
6157,37
6169,10
6182,10
6188,9
6199,28
6257,28
6258,29
6259,41
6260,18
6262,33
6263,10
6271,80
6274,28
6275,10
6278,19
6282,39
6296,58
6331,19
6342,14
9998,10

Mon Jan 152024 11:02:01 GMT-0500 (Eastern Standard Time) - Run Time: 3185ms

Cross Tabulation Query Form - Trip - 2016 v1.1

Row: 2006 GTA zone of origin - gta06_orig
Column: 2006 GTA zone of destination - gta06_dest

Filters:
(2006 GTA zone of destination - gta06_dest In 6259
and
Start time of trip - start_time In 1530-1830
and
Trip purpose of destination - purp_dest $\ln \mathrm{H}$,)

Trip 2016
Table:
,6259
4002,18
5028,10
6039,40

6069,11
6094,7
6096,18
6126,18
6136,10
6146,18
6157,38
6169,10
6182,10
6186,10
6257,28
6258,20
6260,18
6261,38
6262,34
6269,7
6271,40
6274,28
6275,10
6277,24
6278,19
6289,15
6296,18
6342,14

Mon Jan 152024 11:40:59 GMT-0500 (Eastern Standard Time) - Run Time: 2465ms

Cross Tabulation Query Form - Trip - 2016 v1.1

Row: 2006 GTA zone of destination - gta06_dest
Column: 2006 GTA zone of origin - gta06_orig

Filters:
(2006 GTA zone of origin - gta06_orig $\ln 6259$
and
Start time of trip - start_time In 1530-1830
and
Trip purpose of origin - purp_orig $\ln \mathrm{H}$,)

Trip 2016
Table:
,6259
26,10
6039,40
6259,19

6266,9
6268,34
7336,14
9054,10

APPENDIX I

Future Total Traffic Volumes and Detailed Capacity Analysis

Figure 3
xx A.M. Peak Hour Traffic Volumes
744 First Avenue

Project No. 1846-6748 Date. 2024-01-17
Analyst. Aiman Khan

		4				\dagger
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*		\uparrow			\uparrow
Traffic Volume (vph)	37	67	474	0	33	512
Future Volume (vph)	37	67	474	0	33	512
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.913					
Flt Protected	0.983					0.997
Satd. Flow (prot)	1672	0	1863	0	0	1857
Flt Permitted	0.983					0.997
Satd. Flow (perm)	1672	0	1863	0	0	1857
Link Speed (k/h)	50		50			50
Link Distance (m)	314.0		318.6			251.1
Travel Time (s)	22.6		22.9			18.1
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	40	73	515	0	36	557
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	113	0	515	0	0	593
Sign Control	Stop		Free			Free

Intersection Summary

```
Area Type:
Other
```

Control Type: Unsignalized
Intersection Capacity Utilization 66.8\%
ICU Level of Service C
Analysis Period (min) 15

	7	4	\dagger	7	,	\dagger
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		\uparrow			\uparrow
Trafic Volume (vph)	33	32	557	43	69	766
Future Volume (vph)	33	32	557	43	69	766
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.933		0.990			
Flt Protected	0.975					0.996
Satd. Flow (prot)	1694	0	1844	0	0	1855
Flt Permitted	0.975					0.996
Satd. Flow (perm)	1694	0	1844	0	0	1855
Link Speed (k/h)	50		50			50
Link Distance (m)	314.0		318.6			251.1
Travel Time (s)	22.6		22.9			18.1
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	36	35	605	47	75	833
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	71	0	652	0	0	908
Sign Control	Stop		Free			Free

Intersection Summary

```
Area Type:
Other
```

Control Type: Unsignalized
Intersection Capacity Utilization 89.8\%
ICU Level of Service E
Analysis Period (min) 15

	\downarrow		4	p		\downarrow
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		\uparrow			\uparrow
Traffic Volume (vph)	37	67	512	0	33	554
Future Volume (vph)	37	67	512	0	33	554
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.913					
Flt Protected	0.983					0.997
Satd. Flow (prot)	1672	0	1863	0	0	1857
Flt Permitted	0.983					0.997
Satd. Flow (perm)	1672	0	1863	0	0	1857
Link Speed (k/h)	50		50			50
Link Distance (m)	314.0		318.6			251.1
Travel Time (s)	22.6		22.9			18.1
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	40	73	557	0	36	602
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	113	0	557	0	0	638
Sign Control	Stop		Free			Free
Intersection Summary						
Area Type: Other						
Control Type: Unsignalized						
Intersection Capacity Utilization 69.0\%Analysis Period (min) 15				ICU Level of Service C		

	7	4	\dagger	7	,	\dagger
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		\uparrow			\uparrow
Trafic Volume (vph)	33	32	596	43	69	822
Future Volume (vph)	33	32	596	43	69	822
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.933		0.991			
Flt Protected	0.975					0.996
Satd. Flow (prot)	1694	0	1846	0	0	1855
Flt Permitted	0.975					0.996
Satd. Flow (perm)	1694	0	1846	0	0	1855
Link Speed (k/h)	50		50			50
Link Distance (m)	314.0		318.6			251.1
Travel Time (s)	22.6		22.9			18.1
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	36	35	648	47	75	893
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	71	0	695	0	0	968
Sign Control	Stop		Free			Free

Intersection Summary

```
Area Type:
Other
```

Control Type: Unsignalized
Intersection Capacity Utilization 94.8\%
ICU Level of Service F
Analysis Period (min) 15

APPENDIX J

Left-Tum Lane Warrants

Soutbou

PM Peak Hour

PM Peak Hour

APPENDIX K

TAC Excerpts

Stopping sight distance is the sum of the distance travelled during the perception and reaction time and the braking distance.

$$
\begin{equation*}
\mathrm{SSD}=0.278 \mathrm{Vt}+0.039 \frac{\mathrm{~V}^{2}}{\mathrm{a}} \tag{2.5.2}
\end{equation*}
$$

Where:

$$
\begin{aligned}
\text { SSD } & =\text { Stopping sight distance }(\mathrm{m}) \\
\mathrm{t} & =\text { Brake reaction time, } 2.5 \mathrm{~s} \\
\mathrm{~V} & =\text { Design speed }(\mathrm{km} / \mathrm{h}) \\
\mathrm{a} & =\text { Deceleration rate }\left(\mathrm{m} / \mathrm{s}^{2}\right)
\end{aligned}
$$

Table 2.5.2 gives the minimum stopping sight distances on level grade, on wet pavement, for a range of design speeds. These values are used for vertical curve design, intersection geometry and the placement of traffic control devices. The stopping sight distances quoted in Table 2.5.2 may need to be increased for a variety of reasons related to grade and vehicle type as noted below.

Table 2.5.2: Stopping Sight Distance on level roadways for Automobiles ${ }^{54}$

$\begin{aligned} & \text { Design speed } \\ & (\mathrm{km} / \mathrm{h}) \end{aligned}$	Brake reaction distance (m)	Braking distance on level (m)	Stopping sight distance	
			Calculated (m)	Design (m)
20	13.9	4.6	18.5	20
30	20.9	10.3	31.2	35
40	27.8	18.4	46.2	50
50	34.8	28.7	63.5	65
60	41.7	41.3	83.0	85
70	48.7	56.2	104.9	105
80	55.6	73.4	129.0	130
90	62.6	92.9	155.5	160
100	69.5	114.7	184.2	185
110	76.5	138.8	215.3	220
120	83.4	165.2	248.6	250
130	90.4	193.8	284.2	285

Note: Brake reaction distance predicated on a time of 2.5 s ; deceleration rate of $3.4 \mathrm{~m} / \mathrm{s}^{2}$ used to determine calculated sight distance.

Table 9.9.3: Time Gap for Case B1, Left Turn from Stop

Design Vehicle	Time Gap $\left(\mathbf{t}_{\boldsymbol{g}}\right)(\boldsymbol{s})$ at Design Speed of Major Road
Passenger car	7.5
Single-unit truck	9.5
Combination truck (WB 19 and WB 20)	11.5
Longer truck	To be established by road authority

Notes: Time gaps are for a stopped vehicle to turn left onto a two-lane highway with no median and with grades of 3% or less. The table values should be adjusted as follows:

- For multi-lane highways: For left turns onto two-lane highways with more than two lanes, add 0.5 s for passenger cars and 0.7 s for trucks for each additional lane, from the left, in excess of one, to be crossed by the turning vehicle.
- For minor approach grades: If the approach grade is an upgrade that exceeds 3%, add 0.2 s for each percent grade for left turns.
- Some road authorities use higher values for certain specialized vehicles (e.g., Alberta uses 22 s for very long log trucks).

The intersection sight distance along the major road (distance b in Figure 9.9.2) is determined by:

$$
\begin{equation*}
\mathrm{ISD}=0.278 \mathrm{~V}_{\text {major }} t_{\mathrm{g}} \tag{9.9.1}
\end{equation*}
$$

Where:
$\mid S D=$ intersection sight distance (length of the leg of sight triangle along the major road) (m)
$\mathrm{V}_{\text {major }}=$ design speed of the major road (km / h)
$t_{\mathrm{g}}=$ time gap for minor road vehicle to enter the major road (s)
For example, a passenger car turning left onto a two-lane major road should be provided sight distance equivalent to a time gap of 7.5 s in major-road traffic. If the design speed of the major road is $100 \mathrm{~km} / \mathrm{h}$, this corresponds to a sight distance of $0.278(100)(7.5)=208.5$ or 210 m , rounded for design.

A passenger car turning left onto a four-lane undivided roadway will need to cross two near lanes, rather than one. This increases the recommended gap in major-road traffic from 7.5 to 8.0 s . The corresponding value of sight distance for this example would be 223 m . If the minor-road approach to such an intersection is located on a 4\% upgrade, then the time gap selected for intersection sight distance design for left turns should be increased from 8.0 to 8.8 s , equivalent to an increase of 0.2 s for each percent grade.

The design values for intersection sight distance for passenger cars are shown in Table 9.9.4. Figure 9.9.4 includes design values, based on the time gaps for the design vehicles included in Table 9.9.3.

No adjustment of the recommended sight distance values for the major-road grade is generally needed because both the major- and minor-road vehicle will be on the same grade when departing from the intersection. However, if the minor-road design vehicle is a heavy truck and the intersection is located near a sag vertical curve with grades over 3%, then an adjustment to extend the recommended sight distance based on the major-road grade should be considered.

Table 9.9.4: Design Intersection Sight Distance - Case B1, Left Turn From Stop

Design Speed $\mathbf{(k m / h)}$	Stopping 5ight Distance $\mathbf{(m)}$	Intersection Sight Distance for Passenger Cars	
	20	Calculated $\mathbf{(m)}$	Design (m)
30	35	41.7	45
40	50	62.6	65
50	65	83.4	85
60	85	104.3	105
70	105	125.1	130
80	130	146.0	150
90	160	166.8	170
100	185	187.7	190
110	220	208.5	210
120	250	229.4	230
130	285	250.2	255

Note: Intersection sight distance shown is for a stopped passenger car to turn left onto a two-lane highway with no median and grades 3% or less. For other conditions, the time gap should be adjusted and the sight distance recalculated.
Sight distance design for left turns at divided-highway intersections should consider multiple design vehicles and median width. If the design vehicle used to determine sight distance for a divided-highway intersection is larger than a passenger car, then sight distance for left turns will need to be checked for that selected design vehicle and for smaller design vehicles as well. If the divided-highway median is wide enough to store the design vehicle with a clearance to the through lanes of approximately 1 m at both ends of the vehicle, no separate analysis for the departure sight triangle for left turns is needed on the minor-road approach for the near roadway to the left. In most cases, the departure sight triangle for right turns (case B2) will provide sufficient sight distance for a passenger car to cross the near roadway to reach the median. Possible exceptions are addressed in the discussion of case B3.

The time gaps in Table 9.9 .3 can be decreased by 1.0 s for right-turn maneuvers without undue interference with major-road traffic. These adjusted time gaps for the right turn from the minor road are shown in Table 9.9.5. Design values based on these adjusted time gaps are shown in Table 9.9.6 for passenger cars. Figure 9.9.5 includes the design values for the design vehicles for each of the time gaps in Table 9.9.5.

Table 9.9.5: Time Gap for Case B2—Right Turn from Stop and Case B3—Crossing Maneuver

Design Vehicle	Time Gap $\left(\boldsymbol{t}_{g}\right)(\boldsymbol{s})$ at Design Speed of Major Road
Passenger car	6.5
Single-unit truck	8.5
Combination truck (WB 19 and WB 20)	10.5

Note: Time gaps are for a stopped vehicle to turn left onto a two-lane highway with no median and with grades of 3% or less. The table values should be adjusted as follows:

- For multi-lane highways: For left turns onto two-lane highways with more than two lanes, add 0.5 s for passenger cars and 0.7 s for trucks for each additional lane, from the left, in excess of one, to be crossed by the turning vehicle.
- For minor approach grades: If the approach grade is an upgrade that exceeds 3%, add 0.1 s for each percent grade for left turns.

Table 9.9.6: Design Intersection Sight Distance - Case B2, Right Turn from Stop, and Case B3, Crossing Maneuver

Design Speed $(\mathbf{k m} / \mathbf{h})$	Stopping Sight Distance $\mathbf{(m)}$	Intersection Sight Distance for Passenger Cars	
	Calculated (m)	Design (m)	
20	20	36.1	40
30	35	54.2	55
40	50	72.3	75
50	65	90.4	95
60	85	108.4	110
70	105	126.5	130
80	130	144.6	145
90	160	162.6	165
100	185	180.7	185
110	220	198.8	200
120	250	216.8	220
130	285	234.9	235

Note: Intersection sight distance shown is for a stopped passenger car to turn right onto or to cross a two-lane highway with no median and with grades of 3% or less. For other conditions, the time gap should be adjusted and the sight distance recalculated.

Figure 9.9.5: Intersection Sight Distance - Case B2, Right Turn from Stop, and Case B3, Crossing Maneuver (Calculated and Design Values Plotted)

Case F-Left Turns from the Major Road

All locations along a major highway from which vehicles are permitted to turn left across opposing traffic, including intersections and driveways, should have sufficient sight distance to accommodate the left-turn maneuver. Left-turning drivers need sufficient sight distance to decide when to turn left across the lane(s) used by opposing traffic. Sight distance design should be based on a left turn by a stopped vehicle, since a vehicle that turns left without stopping would need less sight distance. The sight distance along the major road to accommodate left turns is the distance traversed at the design speed of the major road in the travel time for the design vehicle given in Table 9.9.11.

Table 9.9.11: Time Gap for Case F, Left Turns from the Major Road

Design Vehicle	Time Gap $\left(t_{g}\right)(s)$ at Design Speed of Major Road
Passenger car	5.5
Single-unit truck	6.5
Combination truck (WB 19 and WB 20)	7.5

Note: Adjustment for multi-lane highways: For turning vehicles that cross more than one opposing lane, add 0.5 s for passenger cars and 0.7 s for trucks for each additional lane to be crossed.

The table also contains appropriate adjustment factors for the number of major-road lanes to be crossed by the turning vehicle. The unadjusted time gap in Table 9.9.11 for passenger cars was used to develop the sight distances in Table 9.9.12 and is illustrated in Figure 9.9.8.

Table 9.9.12: Intersection Sight Distance - Case F, Left Turn from the Major Road

Design Speed $(\mathbf{k m} / \mathbf{h})$	Stopping Sight Distance $\mathbf{(m)})$	Intersection Sight Distance	
		Calculated (m)	Passenger Cars
20	20	30.6	Design (m)
30	35	45.9	35
40	50	61.2	50
50	65	76.5	65
60	85	91.7	80
70	105	107.0	95
80	130	122.3	110
90	160	137.6	125
100	185	152.9	140
110	220	168.2	155
120	250	183.5	170
130	285	198.8	185

Note: Intersection sight distance shown is for a passenger car making a left turn from an undivided highway. For other conditions and design vehicles, the time gap should be adjusted and the sight distance recalculated.

Figure 9.9.8: Intersection Sight Distance - Case F, Left Turn from the Major Road

