

Upper Canada Planning & Engineering Ltd. 3-30 Hannover Drive St. Catharines, ON L2W 1A3

Phone 905-688-9400 Fax 905-688-5274

UCC File: 25028

FUNCTIONAL SERVICING REPORT 519 THOROLD ROAD, WELLAND July 2025

INTRODUCTION

This report is to address the servicing needs for the proposed 22 unit condominium development located on the south side of Thorold Road, east of Clare Avenue and west of South Pelham Road. The development is located at 519 Thorold Road, Welland which has historically been a single detached dwelling.

The development site is approximately 0.45 hectares and includes 22 condominium units in 4 blocks. The site shall include associated asphalt parking lot, concrete curb, catch basins, storm sewers, sanitary servicing, and water servicing.

The objectives of this study are as follows:

- 1. Identify domestic and fire protection water service needs for the site
- 2. Identify sanitary servicing needs for the site
- 3. Identify stormwater management needs for the site

WATER SERVICING

There is an existing 300mm diameter AC watermain located on the south side of Thorold Road fronting the development site. It is proposed to construct a 150mm diameter water service to provide both domestic water supply and fire protection to the proposed building as per the Ontario Building Code standards. Adequate fire protection will be provided for the buildings on the site by an on-site fire hydrant. A 150mm diameter water meter and water meter chamber will be located at the entrance to the site with a 150mm diameter pipe connecting with the existing watermain on Thorold Road.

The estimated peak domestic and commercial water demands have been summarized in Table 1 below for the proposed 22 units (66 persons), using an average residential flow rate of 270 L/capita/day. Domestic peaking factors for the maximum daily demand and maximum hourly demand were interpolated from the Table 3-3 of the Ministry of Environment Design Guidelines for Drinking Water Systems.

Table 1. Estimated Peak Water Demand										
Estimated Peak Domestic Water Demand										
Average Domestic Demand 270 L/cap/day; 66 persons	0.21 L/s									
Maximum Day Domestic Peaking Factor	8.1									
Maximum Day Domestic Demand	1.67 L/s									
Peak Hour Domestic Peaking Factor	12.23									
Peak Hour Domestic Demand	2.57 L/s									

A fire hydrant analysis has been prepared and attached in Appendix A for the proposed hydrant on site using calculations and specifications found in the Fire Underwriters Survey (1999), to ensure protection is available with a residual pressure of 140kPa under fire flow conditions. As shown in the Fire Underwriters Survey calculation sheet, the required flow for the central condo block building is approximately 153.7L/s with considerations for proximity of nearby buildings and construction type. The hydrant calculation sheet shows that a calculated hydrant flow rate of 162.9L/s will be provided by the proposed hydrant using the known static pressure of 379kPa (55psi). Therefore, per the Fire Underwriters Survey, the proposed hydrant will provide sufficient water supply for the building on this site. Additionally, the existing fire hydrant located on the south side of Thorold Road (between #505 and #519) can be also provide additional fire protection needs. Based on the information above, the proposed townhouse development will have adequate fire protection.

SANITARY SERVICING

The proposed development will outlet to the existing 300mm diameter sanitary sewer on Thorold Road. The existing 300mm diameter sanitary sewer on Thorold Road has a capacity of 54.33L/s. The proposed development shall have an approximate outflow of 1.36L/s which will occupy approximately 2.5% of the existing sanitary sewer. It is expected that this will be an acceptable addition to the current capacity of the existing sewer. All sanitary sewer calculations can be found in Appendix B for reference.

STORMWATER MANAGEMENT

Historically, the property at 519 Thorold Road contained a single detached dwelling. The stormwater generated from this site currently flows via overland flow to tow outlets. The first outlet is a ditch inlet catch basin at the northern limits of the property, which discharges into the existing 525mm diameter storm sewer on Thorold Road. The second outlet is located at the southeast corner of the site and flows towards Maple Park. Figure 1 (Appendix C) shows the existing drainage areas contributing stormwater flows.

Figure 2 outlines the overall future drainage areas, where Drainage Areas A10 and A20 encompass the areas to be provided quantity controls prior to discharging to the existing Thorold Road storm sewer. Drainage Area A30 conveys stormwater flows directly to the existing road allowance for Thorold Road.

Quantity Controls

Using the Modified Rational Method (MRM), the existing allowable peak flows and associated required storage were determined. Since the existing storm sewer system on Thorold Road was designed to the 2 year event, all future conditions discharging to the sewer must be controlled to less than the 2 year existing levels. Table 1 outlines the peak flows and allowable conditions for the proposed development. All MRM calculations can be seen in Appendix C.

	Table 2. Peak Stormwater Flows													
Design		Total Peak Flows (L/s)												
Storm	Fvic	ting			Future C	onditions								
(Return Period)	('andifianc		To be Co	ontrolled		ect trolled	Allowable							
Outlet	A	В	A	В	A B		A	В						
2 Year	27.4	27.7	66.9	0	2.8	20.6	24.7	27.7						
5 Year	32.2	32.5	78.5	0	3.3	24.2	24.2	32.5						
100 Year	50.8	51.2	123.9	0	5.2	51.2	24.2	51.2						

Based on the results from Table 2, the increased imperviousness due to the development justifies the need for stormwater quantity controls.

5 Year Design Storm

The stormwater generated by the 5 year which discharges to the existing storm sewer on Thorold Road (Outlet A) must be controlled to 2 year allowable rate of 24.2 L/s. According to the MRM calculations in Appendix C, 46.4m³ of storage is required to adequately reduce the stormwater peak flows to allowable levels during the 5 year event. The storage will be provided by the internal site sewers.

The size and configuration of all internal sewers will be determined as part of the Detailed Engineering Design. For the 2, and 5 year events, the future peak stormwater flows at Outlet B are less than existing levels, therefore no quantity controls are required.

100 Year Storm Event

To provide quantity controls for the 100 year storm event, excess runoff that does not enter the storm sewers on Thorold Road will be conveyed as overland flow to Outlet B, which discharges to the southeast ditch. The allowable peak flow at Outlet A is restricted to 24.2 L/s (2 year allowable peak flow), while the allowable peak flow at Outlet B is 51.2 L/s. The site's storm sewer system will be designed to convey the 5 year post development peak flow with an additional 15 percent surcharge, resulting in a capacity of 90.3 L/s.

Under post development conditions, the total 100 year peak flow at Outlet A is 123.9 L/s. After limiting the flow at this outlet to 24.2 L/s, the remaining 33.7 L/s will be conveyed overland to Outlet B. Based on the MRM calculation sheet provided in Appendix C, the total post-development peak flow at Outlet B is 71.8 L/s.

To achieve the required quantity controls, storage volumes of 59.4 m³ and 2.6 m³ are needed at Outlets A and B, respectively, during the 100 year event. A total of 62.0 m³ of storage will be provided through a combination of underground superpipe storage and surface storage. The final configuration will be confirmed as part of the Detailed Engineering Design.

In summary, the proposed combination of surface, and superpipe storage will adequately satisfy the requirements to reduce peak flows to allowable levels for both the 5 year and 100 year storm events.

Quality Controls

To improve stormwater quality levels for this site, a stormwater oil/grit separator is proposed. The location of the OGS will be determined as part of the Detailed Engineering Design. For Enhanced Protection as per the City of Welland CLI Permit, oil/grit separators are required to provide a minimum average of 80% Total Suspended Solids (TSS) removal. The contributing drainage area from the proposed development and adjacent lands to the proposed oil/grit separator is 0.48 hectares with an impervious coverage of approximately 69%. Considering the ETV Canada particle distribution, the Hydroworks modelling software has indicated that an HD5 will provide 84% TSS overall removal and capture 100% of the stormwater flows. Therefore, A Hydroworks

HD5 is proposed for the site development. The modelling output file has been provided in Appendix D.

MAINTENANCE OF STORMWATER MANAGEMENT FACILITY

HD5 Oil/Grit Separator

The function of the proposed stormwater quality protection facility, a stormwater oil/grit separator, will require maintenance on an annual basis. The following is a summary of the maintenance activities required.

Regular inspections of the stormwater Maintenance Hole (MH) oil/grit interceptor will indicate whether maintenance is required or not. They should be made after every significant storm during the first two years of operation to ensure that it is functioning properly. This will translate into an average of six inspections per year.

Points of regular inspections are as follows:

- a) Is there sediment in the separator sump? The level of sediment can be measured from the surface without entry into the oil/grit separator via a dipstick tube equipped with a ball valve (Sludge Judge) or with a graduated pole with a flat plate attached to the bottom.
- b) Is there oil in the separator sump? This can be checked from the surface by inserting a dipstick in the 150mm vent tube. The presence of oil is usually indicated by an oily sheen, frothing or unusual colouring. The separator should be cleaned in the event of a major spill contamination.
- c) Is there debris or trash at the inlet weir and drop pipe? This can be observed from the surface without entry into the separator. Clogging at the inlet drop pipe will cause stormwater to bypass the sedimentation section and continue downstream without treatment.
- d) Completion of the Inspection Report (a sample report is included in Appendix D for reference purposes). These reports will provide details about the operation and maintenance requirements for this type of stormwater quality device. After an evaluation period (usually 2 years) this information will be used to maximize efficiency and minimize the costs of operation and maintenance for the maintenance hole oil/grit separator.

Typically, stormwater MH oil/grit separators are cleaned out using vacuum pumping. No entry into the unit is required for maintenance. Cleaning should occur annually or whenever the accumulation reaches sediment storage specified by the manufacturer and after any major spills have occurred. Oil levels greater than 2.5 centimeters should be removed immediately by a licensed waste management firm.

Generally, the sediment removed from the separator will not be contaminated to the point that it would be classified as hazardous waste. However, the sediment should be tested to determine the disposal options. The Ministry of Environment, Conservation and Parks publishes sediment disposal guidelines which should be consulted for up-to-date information pertaining to the exact parameters and acceptable levels for the various disposal options. The preferred option is an off-site disposal, arranged by a licensed waste management firm.

The future owners of a Hydroworks facility are provided with an Owner's Manual upon installation, which explains the function, maintenance requirements and procedures for the facility with extensive use It is recommended to follow the manufacturers instructions to allow the oil/grit separator to perform as intended.

I have a site that has two existing stormwater outlets. One outlet is to storm sewers on a road, and the other is to a ditch at the rear of the property. For my new design, I want to take all stormwater to the storm sewers for the minor events, and only use the ditch outlet for overland flows for the major events. When calculating the storage requirements for the minor events, can I calculate it as if the entire site is existing draining to the sewer? Otherwise I would need to store much more.

CONCLUSIONS AND RECOMMENDATIONS

Therefore, based on the above comments and design calculations provided for this site, the following summarizes the servicing for this site.

- 1. The existing 300mm diameter watermain will have sufficient capacity to provide both domestic and fire protection water supply.
- 2. The existing 300mm diameter sanitary sewer on Thorold Road will have adequate capacity for the proposed residential development.
- 3. Stormwater quantity controls are being provided on site to the allowable capacity of the existing storm sewer system on Thorold Road.
- 4. Stormwater quality controls will be provided to MECP Enhanced Protection (80% TSS removal) levels before outletting from the site.
- 5. The site stormwater overland route is to the southeast ditch which conveys through Maple Park.

In conclusion, there exists adequate municipal infrastructure to service the proposed development. We trust the above comments and enclosed calculations are satisfactory for approval. If you have any questions or require additional information, please do not hesitate to contact our office.

Yours very truly,

Prepared By:

Taia Mussari, B.Eng.

Encl.

Reviewed By:

A. S. KEANE
100109861

Adam Keane, P.Eng.
Revised July 11, 2025

APPENDICES

APPENDIX A

Fire Underwriters Survey Calculation Sheet Hydrant Analysis

Fire Underwriters Survey

Is roof wood shingles or shakes (Yes/No).

Water Supply for Public Fire Protection (1999) Calculations

19 THOROLD ROAD - 3-STOREY CONDOMINIUM BLOCK		
Required Fire Flow in Litres per Minute	F=	9,223 (L/m)
		153.71 (L/s) 2,436 (USgmp)
		2,430 (O3g111p)
Type of Construction	_	
Ordinary Construction (brick or other masonry walls, combustible floor and interior).	C=	1.00
Total Floor Area in square metres (including all stories, excluding basements at	A=	301 (m2)
least 50% below grade)		
NOTE: Fire Walls that meet or exceed Nation Building Code of Canada (2 hour		
fire resistance) divide building.		
Total Number of Floors		3
2. Combustibility of Contents (may not reduce fire flow demand below 2,000 L/min)		
Limited Combustible]=	-15%
3. Sprinkler Systems		
Is there a complete automatic sprinkler protection system per NFPA (Yes/No).	No	0%
Water supply standard for both system and fire department hose lines (Yes/No).	No	0%
Is system fully monitored (Yes/No).	No	0%
Total Sprinker Reduction to Overall Fire Flow Demand		0%
4. Spacial Separation of Neighbouring Structures (within 45 metres)		
Location of Building:	1	
North 3-Storey Apartment Building		
Distance to Nearest Building to the North	24.0 m	
Distance to Nearest Building to the South	12.5 m	
Distance to Nearest Building to the East	10.9 m	
Distance to Nearest Building to the West	14.6 m	15%
Total Spacial Separation to Adjacent Structures		55%
,		
Additions		_

No

Headloss in a Single Ended Lead for Fire Hydrant

519 THOROLD ROAD

Project:

Project.	213 IUOVOLD L	NOAD				
Project Number:	25028					
Date:	July 10, 2025					
Prepared by:	T. Mussari, B.Er	g				
Proposed Hydrant: Or						
Single Lead Length (m)		45.0m				
Single Lead Diameter (•	150mm		0.15m		
Internal W/M Loop Le		0.0m	0.0m			
Internal W/M Loop Dia	• •	000mm	000mm			
Hydrant Elevation (m)	:	181.88m				
Theoretical Flow at 20	PSI (L/s):	163 L/s		2582 USgpm		
Reduced Hydrant Flow	/ (L/s):	147 L/s		2324 USgpm		
Hydrant Rating (NFPA	291):	BLUE				
Fire Pressure (PSI):		20PSI		137895.14 Pa		
Backflow Preventor:		None		.0 PSI		
Fireflow Meter:		Sensus 8" F2 F	ireline	2.9 PSI		
		SINGLE	INTERNAL			
Total Number of 90° E	lbows:	0	0	ke = 0.9		
Valves:		1	0	ke = 0.2		
Total Number of 45° E	lbows:	0	0	ke = 0.4		
Reducer:		0	0	ke = 0.06		
Increaser:		0	0	ke = 0.15		
Number Tee Fittings (s	- ·	1	0	ke = 0.4		
Number of Tee Fitting	s (turn):	0	0	ke = 1.8		
Known Hydrant - 519,	<u>/505 Thorold Road</u>	d <u>, Welland</u>				
Approximate Elevation	n (m):	181.81m				
Known Static Pressure	(PSI):	55PSI		379211.64 Pa		
Feeder Main Diameter	r (mm):	300mm		0.30m		
Approximate Pressure			INTERN <i>A</i>	AL LOOP		
Calculated Headloss		SINGLE	SMALL	LARGE		
	D:	0.15	0.00	0.00		
	Re:	9.16E+05	6.87E+15	6.87E+15		
	V2:	9.22 m/s	1.04E+21	1.04E+21		
	Q:	0.1629 m3/s	0.0814 m3/s	0.0814 m3/s		
	A:	0.018 m2	0.000 m2	0.000 m2		
	y:	1.51E-06				
	ks:	0.0000015				
	f:	0.012	0.012	0.012		
	Density:	9810				
	g:	9.81 m2/s				
Bernoulli Terms						
	P1:	38.66 m	P2:	14.06 m		
	V1:	0.07 m	V2:	4.33 m		
	z1:	181.81m	Z2:	181.88m		
				2.60 m		
			Fittings:	2.60 m		
			Fittings: Backflow:	2.60 m 0.00 m		
			_			
			Backflow:	0.00 m		
TOTAL HI	EAD 1:	220.53 m	Backflow: Fire:	0.00 m 2.06 m		

APPENDIX B

Sanitary Sewer Calculation Sheet

UPPER CANADA CONSULTANTS

3-30 HANNOVER DRIVE

ST.CATHARINES, ONTARIO, L2W 1A3

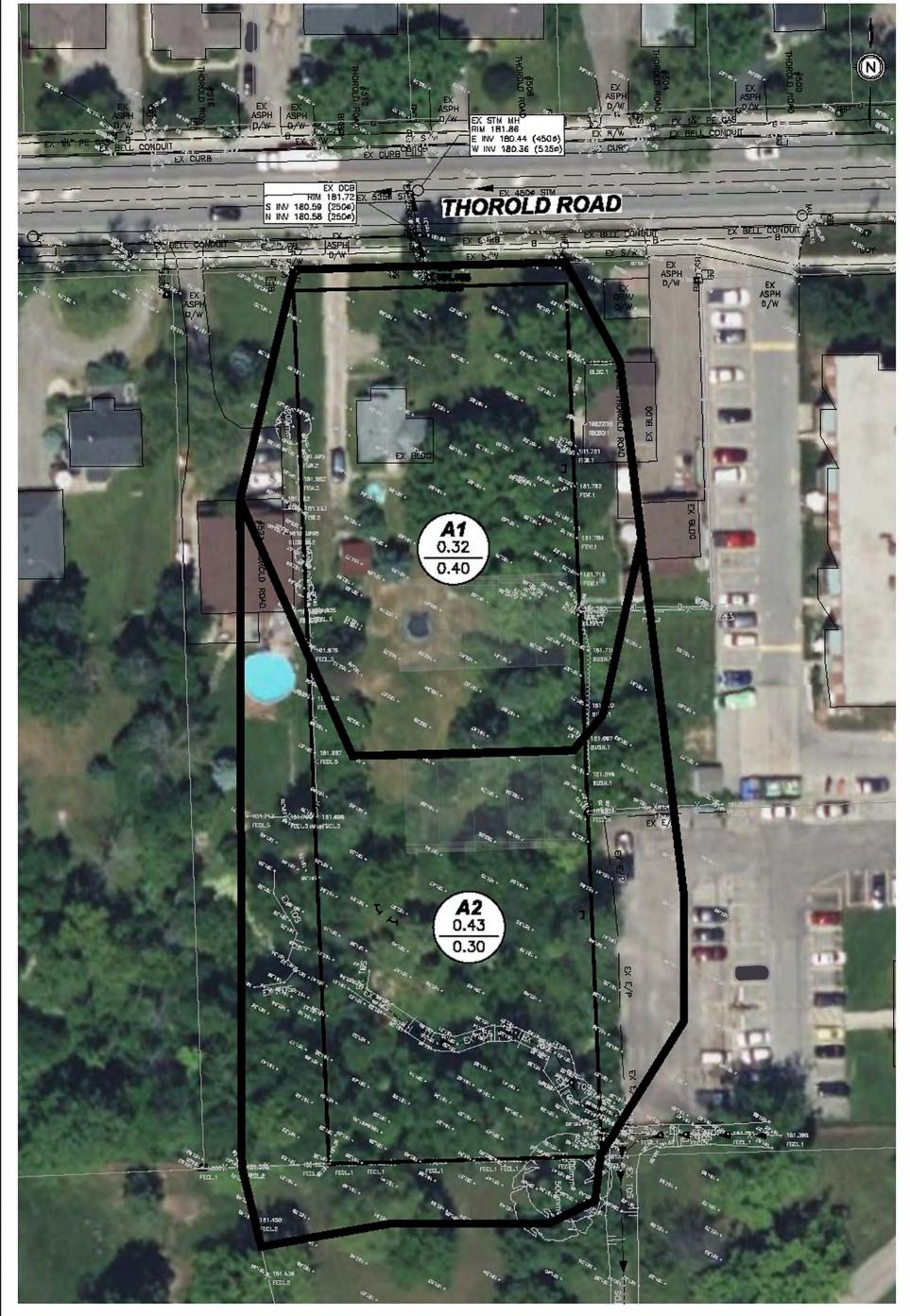
DESIGN FLOWS SEWER DESIGN

RESIDENTIAL: 375 LITRES/PERSON/DAY (AVERAGE DAILY FLOW) PIPE ROUGHNESS: 0.013 FOR MANNING'S EQUATION

INFILTRATION RATE: 0.286 LITRES/HECTARE (M.O.E FLOW ALLOWANCE IS BETWEEN 0.10 & 0.28 LITRES/FPIPE SIZES: 1.016 IMPERIAL EQUIVALENT FACTOR PERCENT FULL: TOTAL PEAK FLOW / CAPACITY

MUNICIPALITY: CITY OF WELLAND

PROJECT: 519 THOROLD ROAD SANITARY SEWER DESIGN SHEET

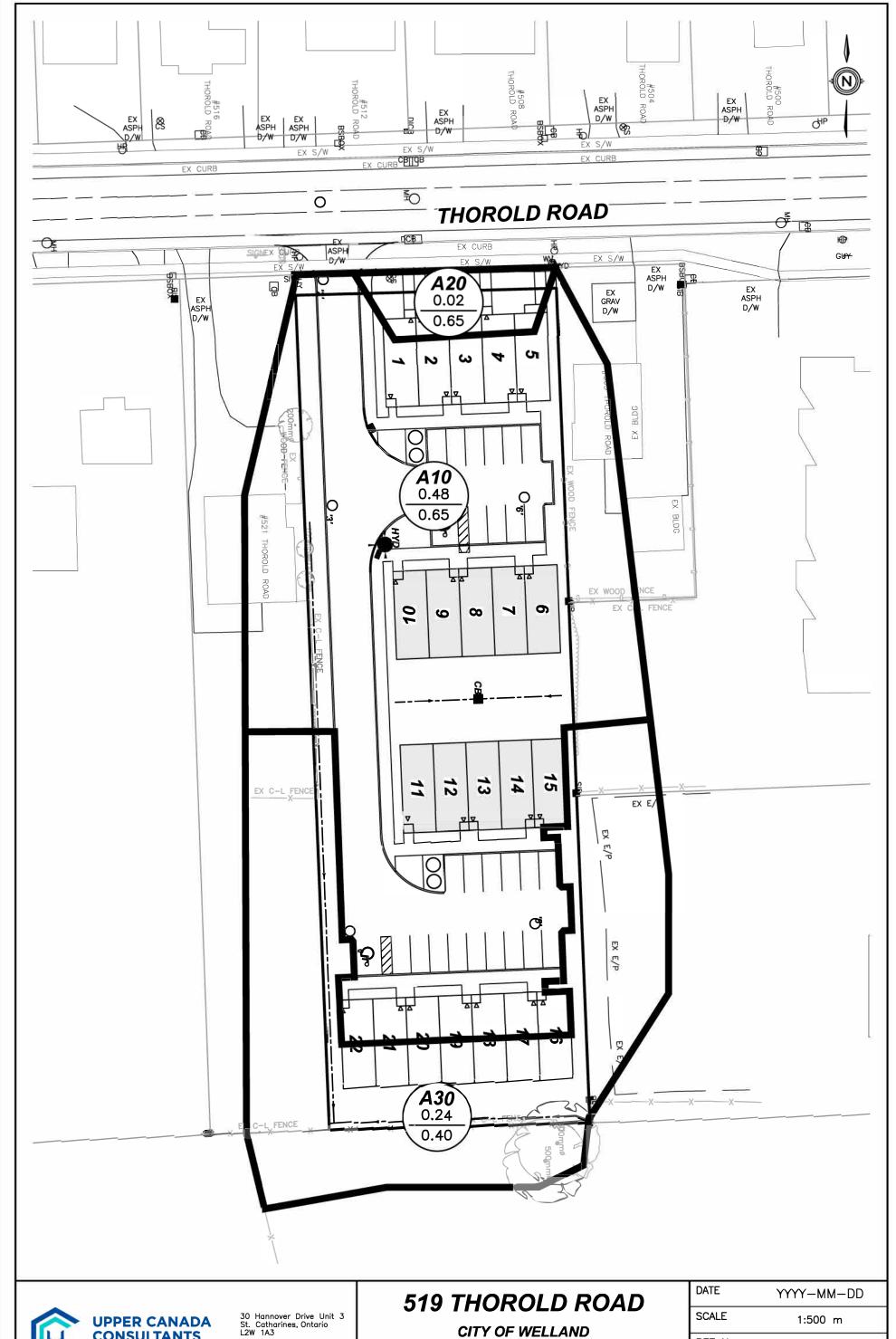

PROJECT NO: 25028

LOCATI	ON		A	REA			ACCUMULATED PEAK FLOW				DESIGN FLOW						
							Total			Infiltration	Total	Pipe	Pipe	Pipe	Full Flow	Full Flow	Check
Description	From	To	Increment	Accumulated	Number	Population	Population	Peaking	Flow	Flow	Peak Flow	Diameter	Length	Slope	Velocity	Capacity	Percent
	M.H	M.H.	(hectares)	(hectares)	of Units	Increment	Served	Factor	(L/s)	L/s	(L/s)	(mm)	(m)	(%)	(m/s)	(L/s)	Full
SITE			0.45	0.45	22	66	66	4.29	1.23	0.13	1.36						
THOROLD ROAD				0.45			66	4.29	1.23	0.13	1.36	300	116.0	0.20	0.618	45.12	3.0%

APPENDIX C

Figure 1 – Existing Storm Drainage Area Plan Figure 2 – Proposed Storm Drainage Area Plan Modified Rational Method – Peak Flow Calculations

30 Hannover Drive Unit 3 St. Cothorines, Onterio LZW 1A3


Phone: (905)688-9400 Fox: (905)688-5274 519 THOROLD ROAD

CITY OF WELLAND

EXISTING

OVERALL STORM DRAINAGE AREA

DATE	MM-YYYY
SCALE	1:500 m
REF No.	*
DWG No.	FIGURE 1

Phone: (905)688-9400 Fax: (905)688-5274

CITY OF WELLAND PROPOSED OVERALL STORM DRAINAGE AREA

DATE	YYYY-MM-DD
SCALE	1:500 m
REF No.	;
DWG No.	FIGURE 2

STORMWATER DESIGN SHEET

2 YEAR DESIGN STORM EVENT - OUTLET A

PROJECT: 519 THOROLD ROAD, CITY OF WELLAND

	LOCATION								TORMWA	WATER ANALYSIS		
			PIPE	INCREMENT	TOTAL	TO UPPER	IN			ACCUMLD	RAINFALL	PEAK
DESCRIPTION	FROM	ТО	LENGTH	AREA	AREA	END	SECTION	RUNOFF	SECTION	A x R	INTENSITY	FLOW
	M.H.	M.H.	(m)	(hectares)	(hectares)	(min)	(min)	COEFF	AXR		(mm/hr)	(L/s)
PRE-DEVELOPMENT CONDITIONS	S - 2 YEAR											
A1	SITE	OUTLET A		0.32	0.32	10.00	10.00	0.400	0.128	0.128	77.186	27.4
POST-DEVELOPMENT CONDITION	NS - 2 YEAR											
A10	SITE	OUTLET A		0.48	0.48	10.00	10.00	0.650	0.312	0.312	77.186	66.9
A20 - Uncontrolled	SITE	OUTLET A		0.02	0.02	10.00	10.00	0.650	0.013	0.013	77.186	2.8
TOTAL ALLOWABLE PEAK OUTFI	LOW - 2 YE	L AR (OUTLE	<u>T A)</u>									24.7
DESIGN BY:	UPPER CA	NADA CON	SULTANT	S		RAINFALL	PARAMET	TERS:		a =	755.00	mm/hr
		Time to Upper End = 10 min.				b =	8.00	minutes				
		City of Welland - 2 Year IDF Curve				c =	0.79					

DESIGN BY:

DATE:

T. MUSSARI, B.ENG

JUNE 2025

Modified Rational Method (MRM) Required Storage Volume 2 YEAR STORM EVENT - OUTET A

519 THOROLD ROAD Project No.: 25028 Date: JUNE 2025

Design By: T. MUSSARI, B.ENG

Description: STORMWATER MANAGEMENT PLAN

Storm Event: City of Welland - 2 Year IDF Curve

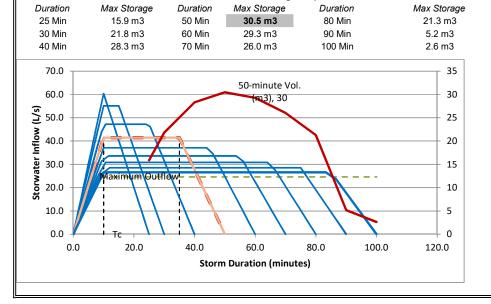
a = 755.00 mm/hr b = 8.00 minutes

c = 0.79

Critical Storm Duration: 50.00 minutes Tail Multiplier (x1-11.5

Tc From Design: 10.00 minutes Storm Tail Time: 35.00 minutes

Accumulated Area x R (Ha): 0.312 <-- Area x Runoff Coefficient (Sewer Design Sheet)


Peak Rainfall Intensity: 47.85 mm/hr Peak Inflow at Tc: 41.47 L/s

Maximum Release Rate: 24.66 <-- Outlet Full Flow Capacity (Design Sheet)

Time When Outlet Exceeded: 5.95

Time (min)	Intensity (mm/hr)	Inflow (L/s)	Outflow (L/s)	Interval Volume (m3)	Total Required Volume (m3)
0.0	0.00	0.00	24.66	-1.5	0.0
1.7	7.97	6.91	24.66	-1.8	0.0
3.3	15.95	13.82	24.66	-1.1	0.0
5.0	23.92	20.73	24.66	-0.4	0.0
6.7	31.90	27.64	24.66	0.3	0.3
8.3	39.87	34.55	24.66	1.0	1.3
10.0	47.85	41.47	24.66	1.7	3.0
11.7	47.85	41.47	24.66	1.7	4.7
13.3	47.85	41.47	24.66	1.7	6.3
15.0	47.85	41.47	24.66	1.7	8.0
16.7	47.85	41.47	24.66	1.7	9.7
18.3	47.85	41.47	24.66	1.7	11.4
20.0	47.85	41.47	24.66	1.7	13.1
21.7	47.85	41.47	24.66	1.7	14.7
23.3	47.85	41.47	24.66	1.7	16.4
25.0	47.85	41.47	24.66	1.7	18.1
26.7	47.85	41.47	24.66	1.7	19.8
28.3	47.85	41.47	24.66	1.7	21.5
30.0	47.85	41.47	24.66	1.7	23.1
31.7	47.85	41.47	24.66	1.7	24.8
33.3	47.85	41.47	24.66	1.7	26.5
35.0	47.85	41.47	24.66	1.7	28.2
36.7	42.53	36.86	24.66	1.2	29.4
38.3	37.21	32.25	24.66	0.8	30.2
40.0	31.90	27.64	24.66	0.3	30.5
41.7	26.58	23.04	24.66	-0.2	30.3
43.3	21.26	18.43	24.66	-0.6	29.7
45.0	15.95	13.82	24.66	-1.1	28.6
46.7	10.63	9.21	24.66	-1.5	27.0
48.3	5.32	4.61	24.66	- 2.0	25.0
50.0	0.00	0.00	24.66	-2.5	22.6

Variable Storm Duration Storage Requirements

STORMWATER DESIGN SHEET

2 YEAR DESIGN STORM EVENT - OUTLET B

PROJECT: 519 THOROLD ROAD, CITY OF WELLAND

	LOCATION								TORMWA	WATER ANALYSIS		
			PIPE	INCREMENT	TOTAL	TO UPPER	IN			ACCUMLD	RAINFALL	PEAK
DESCRIPTION	FROM	TO	LENGTH	AREA	AREA	END	SECTION	RUNOFF	SECTION	AxR	INTENSITY	FLOW
	M.H.	M.H.	(m)	(hectares)	(hectares)	(min)	(min)	COEFF	AXR		(mm/hr)	(L/s)
PRE-DEVELOPMENT CONDITIONS	5 - 2 YEAR											
A2	SITE	OUTLET		0.43	0.43	10.00	10.00	0.300	0.129	0.129	77.186	27.7
POST-DEVELOPMENT CONDITION	IS - 2 YEAR											
A10				0.24	0.24	10.00	10.00	0.400	0.096	0.096	77.186	20.6
TOTAL ALLOWABLE PEAK OUTFI	LOW - 2 YEA	AR										27.7
DESIGN BY:	UPPER CA	NADA CON	SULTANT	S		RAINFALL				a =	755.00	mm/hr
	30 HANNO	VER DRIVE	E, UNIT 3			Time to Up	per End =	10	min.	b =	8.00	minutes
	CITY OF WELLAND							City of Welland - 2 Year IDF Curve				
DESIGN BY:	T. MUSSAF	RI, B.ENG										
DATE:	JUNE 2025											

Modified Rational Method (MRM) Required Storage Volume 2 YEAR STORM EVENT - OUTLET B

519 THOROLD ROAD
Project No.: 25028
Date: JUNE 2025

Design By: T. MUSSARI, B.ENG

Description: STORMWATER MANAGEMENT PLAN

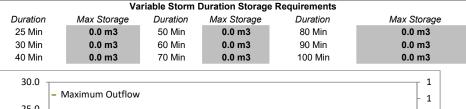
Storm Event: City of Welland - 2 Year IDF Curve

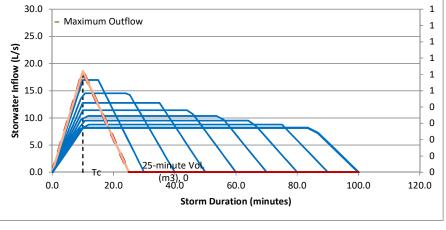
a = 755.00 mm/hr b = 8.00 minutes

c = 0.79

Critical Storm Duration: 25.00 minutes Tail Multiplier (x1-11.5

Tc From Design: 10.00 minutes
Storm Tail Time: 10.00 minutes


Accumulated Area x R (Ha): 0.096 <-- Area x Runoff Coefficient (Sewer Design Sheet)


Peak Rainfall Intensity: 69.66 mm/hr Peak Inflow at Tc: 18.58 L/s

Maximum Release Rate: 27.66 <-- Outlet Full Flow Capacity (Design Sheet)

Time When Outlet Exceeded: OUTLET CAPACITY LARGER THAN INLET

Time (min)	Intensity (mm/hr)	Inflow (L/s)	Outflow (L/s)	Interval Volume (m3)	Total Required Volume (m3)
0.0	0.00	0.00	27.66	-1.7	0.0
0.8	5.80	1.55	27.66	-1.3	0.0
1.7	11.61	3.10	27.66	-1.2	0.0
2.5	17.41	4.64	27.66	-1.2	0.0
3.3	23.22	6.19	27.66	-1.1	0.0
4.2	29.02	7.74	27.66	-1.0	0.0
5.0	34.83	9.29	27.66	-0.9	0.0
5.8	40.63	10.84	27.66	-0.8	0.0
6.7	46.44	12.38	27.66	-0.8	0.0
7.5	52.24	13.93	27.66	-0.7	0.0
8.3	58.05	15.48	27.66	-0.6	0.0
9.2	63.85	17.03	27.66	-0.5	0.0
10.0	69.66	18.58	27.66	-0.5	0.0
10.8	65.79	17.54	27.66	-0.5	0.0
11.7	61.92	16.51	27.66	-0.6	0.0
12.5	58.05	15.48	27.66	-0.6	0.0
13.3	54.18	14.45	27.66	-0.7	0.0
14.2	50.31	13.42	27.66	-0.7	0.0
15.0	46.44	12.38	27.66	-0.8	0.0
15.8	42.57	11.35	27.66	-0.8	0.0
16.7	38.70	10.32	27.66	-0.9	0.0
17.5	34.83	9.29	27.66	-0.9	0.0
18.3	30.96	8.26	27.66	-1.0	0.0
19.2	27.09	7.22	27.66	-1.0	0.0
20.0	23.22	6.19	27.66	-1.1	0.0
20.8	19.35	5.16	27.66	-1.1	0.0
21.7	15.48	4.13	27.66	-1.2	0.0
22.5	11.61	3.10	27.66	-1.2	0.0
23.3	7.74	2.06	27.66	-1.3	0.0
24.2	3.87	1.03	27.66	-1.3	0.0
25.0	0.00	0.00	27.66	-1.4	0.0

STORMWATER DESIGN SHEET

5 YEAR DESIGN STORM EVENT - OUTLET A

PROJECT: 519 THOROLD ROAD, CITY OF WELLAND

	LOCATION								STORMWATER ANALYSIS				
				INCREMENT		TO UPPER	,				RAINFALL		
DESCRIPTION	FROM	ТО	LENGTH	AREA	AREA	END	SECTION	RUNOFF	SECTION	A x R	INTENSITY	FLOW	
	M.H.	M.H.	(m)	(hectares)	(hectares)	(min)	(min)	COEFF	AXR		(mm/hr)	(L/s)	
PRE-DEVELOPMENT CONDITIONS	- 2 YEAR												
A1	SITE	OUTLET A		0.32	0.32	10.00	10.00	0.400	0.128	0.128	77.186	27.4	
PRE-DEVELOPMENT CONDITIONS													
A1	SITE	OUTLET A		0.32	0.32	10.00	10.00	0.400	0.128	0.128	90.598	32.2	
POST-DEVELOPMENT CONDITION	S - 5 YEAR												
A10	SITE	OUTLET A		0.48	0.48	10.00	10.00	0.650	0.312	0.312	90.598	78.5	
A20 - Uncontrolled	SITE	OUTLET A		0.02	0.02	10.00	10.00	0.650	0.013	0.013	90.598	3.3	
TOTAL ALLOWABLE PEAK OUTFL	T A)									24.2			

DESIGN BY: UPPER CANADA CONSULTANTS **RAINFALL PARAMETERS:**

830.00 mm/hr

30 HANNOVER DRIVE, UNIT 3

Time to Upper End =

10 min.

7.30 minutes

CITY OF WELLAND

DESIGN BY:

T. MUSSARI, B.ENG

JUNE 2025 DATE:

City of Welland - 5 Year IDF Curve

c =

b =

0.78

Modified Rational Method (MRM) Required Storage Volume 5 YEAR STORM EVENT - OUTLET A

519 THOROLD ROAD Project No.: 25028 Date: JUNE 2025

Design By: T. MUSSARI, B.ENG

Description: STORMWATER MANAGEMENT PLAN

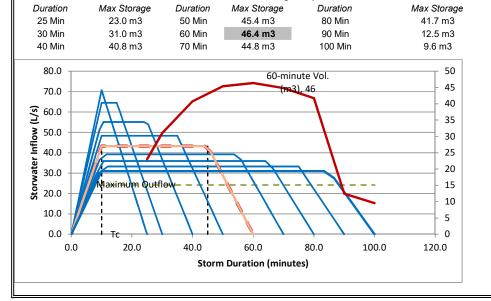
Storm Event: City of Welland - 5 Year IDF Curve

a = 830.00 mm/hr b = 7.30 minutes

c = 0.78

Critical Storm Duration: 60.00 minutes Tail Multiplier (x1-11.5

Tc From Design: 10.00 minutes Storm Tail Time: 45.00 minutes


Accumulated Area x R (Ha): 0.312 <-- Area x Runoff Coefficient (Sewer Design Sheet)

Peak Rainfall Intensity: 49.87 mm/hr
Peak Inflow at Tc: 43.22 L/s

Maximum Release Rate: 24.17 <-- Outlet Full Flow Capacity (Design Sheet)

Time When Outlet Exceeded: 5.59

Time (min)	Intensity (mm/hr)	Inflow (L/s)	Outflow (L/s)	Interval Volume (m3)	Total Required Volume (m3)
0.0	0.00	0.00	24.17	-1.5	0.0
2.0	9.97	8.64	24.17	-1.9	0.0
4.0	19.95	17.29	24.17	-0.8	0.0
6.0	29.92	25.93	24.17	0.2	0.2
8.0	39.90	34.58	24.17	1.2	1.5
10.0	49.87	43.22	24.17	2.3	3.7
12.0	49.87	43.22	24.17	2.3	6.0
14.0	49.87	43.22	24.17	2.3	8.3
16.0	49.87	43.22	24.17	2.3	10.6
18.0	49.87	43.22	24.17	2.3	12.9
20.0	49.87	43.22	24.17	2.3	15.2
22.0	49.87	43.22	24.17	2.3	17.5
24.0	49.87	43.22	24.17	2.3	19.7
26.0	49.87	43.22	24.17	2.3	22.0
28.0	49.87	43.22	24.17	2.3	24.3
30.0	49.87	43.22	24.17	2.3	26.6
32.0	49.87	43.22	24.17	2.3	28.9
34.0	49.87	43.22	24.17	2.3	31.2
36.0	49.87	43.22	24.17	2.3	33.5
38.0	49.87	43.22	24.17	2.3	35.8
40.0	49.87	43.22	24.17	2.3	38.0
42.0	49.87	43.22	24.17	2.3	40.3
44.0	49.87	43.22	24.17	2.3	42.6
46.0	46.55	40.34	24.17	1.9	44.5
48.0	39.90	34.58	24.17	1.2	45.8
50.0	33.25	28.82	24.17	0.6	46.4
52.0	26.60	23.05	24.17	-0.1	46.2
54.0	19.95	17.29	24.17	-0.8	45.4
56.0	13.30	11.53	24.17	-1.5	43.9
58.0	6.65	5.76	24.17	-2.2	41.7
60.0	0.00	0.00	24.17	-2.9	38.8
	Va	riable Storm [Ouration Storag	ge Requirements	

STORMWATER DESIGN SHEET

5 YEAR DESIGN STORM EVENT - OUTLET B

PROJECT: 519 THOROLD ROAD, CITY OF WELLAND

		TIME OF FLOW		STORMWATER ANALYSIS								
DESCRIPTION	FROM	то	LENGTH		AREA		SECTION	l	SECTION	ACCUMLD A x R	INTENSITY	FLOW
	M.H.	M.H.	(m)	(hectares)	(hectares)	(min)	(min)	COEFF	AXR		(mm/hr)	(L/s)
PRE-DEVELOPMENT CONDITIONS	- 5 YEAR											
A2	SITE	OUTLET		0.43	0.43	10.00	10.00	0.300	0.129	0.129	90.598	32.5
POST-DEVELOPMENT CONDITION	S - 5 YEAR											
A10				0.24	0.24	10.00	10.00	0.400	0.096	0.096	90.598	24.2
TOTAL ALLOWABLE PEAK OUTFL	OW - 5 YE	AR_										32.5
DESIGN BY:	UPPER CA	NADA CON	SULTANT	S		RAINFALL	PARAMET	ΓERS:	<u> </u>	a =	830.00	mm/hr
	30 HANNO	VER DRIVI	E, UNIT 3			Time to Up	per End =	10	min.	b =	7.30	minutes
	CITY OF W	VELLAND				City of Welland - 5 Year IDF Curve			c =	0.78		
DESIGN BY:	T. MUSSAF	RI, B.ENG										
DATE:	JUNE 2025											

Modified Rational Method (MRM) Required Storage Volume 2 YEAR STORM EVENT - OUTLET B

519 THOROLD ROAD Project No.: 25028 Date: JUNE 2025

Design By: T. MUSSARI, B.ENG

Description: STORMWATER MANAGEMENT PLAN

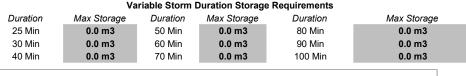
Storm Event: City of Welland - 5 Year IDF Curve

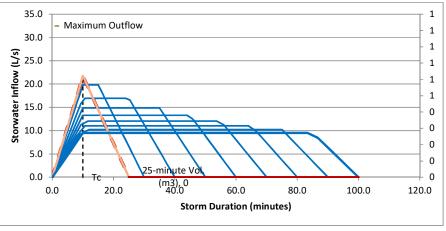
a = 830.00 mm/hr b = 7.30 minutes

c = 0.78

Critical Storm Duration: 25.00 minutes Tail Multiplier (x1-11.5

Tc From Design: 10.00 minutes
Storm Tail Time: 10.00 minutes


Accumulated Area x R (Ha): 0.096 <-- Area x Runoff Coefficient (Sewer Design Sheet)


Peak Rainfall Intensity: 81.58 mm/hr Peak Inflow at Tc: 21.75 L/s

Maximum Release Rate: 32.46 <-- Outlet Full Flow Capacity (Design Sheet)

Time When Outlet Exceeded: OUTLET CAPACITY LARGER THAN INLET

Time (min)	Intensity (mm/hr)	Inflow (L/s)	Outflow (L/s)	Interval Volume (m3)	Total Required Volume (m3)
0.0	0.00	0.00	32.46	-1.9	0.0
0.8	6.80	1.81	32.46	-1.5	0.0
1.7	13.60	3.63	32.46	-1.4	0.0
2.5	20.39	5.44	32.46	-1. 4 -1.4	0.0
3.3	27.19	7.25	32.46	-1.4	0.0
4.2	33.99	9.06	32.46	-1.3 -1.2	0.0
5.0	40.79	10.88	32.46	-1.2 -1.1	0.0
5.8	47.59	12.69	32.46	-1.0	0.0
6.7	54.38	14.50	32.46	-0.9	0.0
7.5	61.18	16.32	32.46	-0.9 -0.8	0.0
8.3	67.98	18.13	32.46	-0.6 -0.7	0.0
9.2	74.78	19.94	32.46	-0.7 -0.6	0.0
10.0	81.58	21.75	32.46	-0.6 -0.5	0.0
10.0	77.05	20.55	32.46	-0.5 -0.6	0.0
11.7	77.03 72.51	19.34	32.46	-0.6 -0.7	0.0
12.5	67.98	18.13	32.46	-0.7 -0.7	0.0
13.3	63.45	16.92	32.46	-0.8	0.0
14.2	58.92	15.71	32.46	-0.8	0.0
15.0	54.38	14.50	32.46	-0.9	0.0
15.8	49.85	13.29	32.46	-1.0	0.0
16.7	45.32	12.09	32.46	-1.0	0.0
17.5	40.79	10.88	32.46	-1.1	0.0
18.3	36.26	9.67	32.46	-1.1	0.0
19.2	31.72	8.46	32.46	-1.2	0.0
20.0	27.19	7.25	32.46	-1.3	0.0
20.8	22.66	6.04	32.46	-1.3	0.0
21.7	18.13	4.83	32.46	-1.4	0.0
22.5	13.60	3.63	32.46	-1.4	0.0
23.3	9.06	2.42	32.46	-1.5	0.0
24.2	4.53	1.21	32.46	-1.6	0.0
25.0	0.00	0.00	32.46	-1.6	0.0
II .	Va	riable Storm [Juration Storag	na Raquiraments	·

STORMWATER DESIGN SHEET

100 YEAR DESIGN STORM EVENT - OUTLETS A & B

PROJECT: 519 THOROLD ROAD, CITY OF WELLAND

	LOCA	TION					F FLOW	S	STORMWA	TER ANALY		
				INCREMENT	_	TO UPPER				ACCUMLD		PEAK
DESCRIPTION	FROM	ТО	LENGTH		AREA	END	SECTION			A x R	INTENSITY	
	M.H.	M.H.	(m)	(hectares)	(hectares)	(min)	(min)	COEFF	AXR		(mm/hr)	(L/s)
PRE-DEVELOPMENT CONDITIONS	S - 100 YEAI	<u> </u>										
A1	SITE	OUTLET A		0.32	0.32	10.00	10.00	0.400	0.128	0.128	142.985	50.8
A2	SITE	OUTLET B		0.43	0.43	10.00	10.00	0.300	0.129	0.129	142.985	51.2
POST-DEVELOPMENT CONDITION	NS - 100 YEA	<u>R</u>										
A10	SITE	OUTLET A		0.48	0.48	10.00	10.00	0.650	0.312	0.312	142.985	123.9
A20 - Uncontrolled	SITE	OUTLET A		0.02	0.02	10.00	10.00	0.650	0.013	0.013	142.985	5.2
A30	SITE	OUTLET B		0.24	0.24	10.00	10.00	0.400	0.096	0.096	142.985	38.1
				OU'	TLET A							
TOTAL ALLOWABLE PEAK OUTFLO	W - 100 YE	AR (OUTLET	(A)									45.7
TOTAL ALLOWABLE PEAK OUTFI	LOW - 5 YE	AR (OUTLE	T A)									24.2
5 YEAR POST-DEVELOPMENT FLO)W + 15% S	URCHARGI	NG									90.3
				<u>OU</u>	TLET B							
TOTAL ALLOWABLE PEAK OUTFI	LOW - 100 Y	EAR (OUTI	LET B)									51.2
100 YEAR OVERLAND FLOW - SOUT	HEAST DIT	СН										33.7
TOTAL 100 YEAR POST DEVLOPM	ENT FLOW	- (OUTLET	<u>B)</u>									71.8
	VIDDED C	*** D + GOY	OV. T. A. N. T.	~		D		TERRO C			1020.00	
DESIGN BY:		NADA CON		S			L PARAMET			a =		mm/hr
		VER DRIVE	L, UNIT 3			Time to Up	•		min.	b =		minutes
DECLCM DV	CITY OF V					City of We	lland - 100	Year IDF (Jurve	c =	0.73	
DESIGN BY:	T. MUSSAI JUNE 2025											
DATE:	JUNE 2025											

Modified Rational Method (MRM) Required Storage Volume 100 YEAR STORM EVENT - OUTLET A

519 THOROLD ROAD Project No.: 25028 Date: JUNE 2025

Design By: T. MUSSARI, B.ENG

Description: STORMWATER MANAGEMENT PLAN

Storm Event: City of Welland - 100 Year IDF Curve

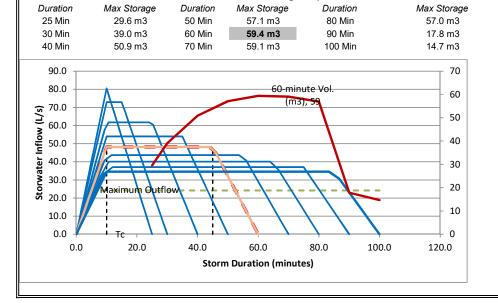
 $\begin{array}{lll} a = & 1020.00 & mm/hr \\ b = & 4.70 & minutes \end{array}$

c = 0.73

Critical Storm Duration: 60.00 minutes Tail Multiplier (x1-11.5

Tc From Design: 10.00 minutes Storm Tail Time: 45.00 minutes

Accumulated Area x R (Ha): 0.227 <-- Area x Runoff Coefficient (Sewer Design Sheet)


Peak Rainfall Intensity: 76.32 mm/hr Peak Inflow at Tc: 48.17 L/s

Maximum Release Rate: 24.20 <-- Outlet Full Flow Capacity (Design Sheet)

Time When Outlet Exceeded: 5.02

Time (min)	Intensity (mm/hr)	Inflow (L/s)	Outflow (L/s)	Interval Volume (m3)	Total Required Volume (m3)
0.0	0.00	0.00	24.20	-1.5	0.0
2.0	15.26	9.63	24.20	-1.7	0.0
4.0	30.53	19.27	24.20	-0.6	0.0
6.0	45.79	28.90	24.20	0.6	0.6
8.0	61.05	38.54	24.20	1.7	2.3
10.0	76.32	48.17	24.20	2.9	5.2
12.0	76.32	48.17	24.20	2.9	8.0
14.0	76.32	48.17	24.20	2.9	10.9
16.0	76.32	48.17	24.20	2.9	13.8
18.0	76.32	48.17	24.20	2.9	16.7
20.0	76.32	48.17	24.20	2.9	19.5
22.0	76.32	48.17	24.20	2.9	22.4
24.0	76.32	48.17	24.20	2.9	25.3
26.0	76.32	48.17	24.20	2.9	28.2
28.0	76.32	48.17	24.20	2.9	31.1
30.0	76.32	48.17	24.20	2.9	33.9
32.0	76.32	48.17	24.20	2.9	36.8
34.0	76.32	48.17	24.20	2.9	39.7
36.0	76.32	48.17	24.20	2.9	42.6
38.0	76.32	48.17	24.20	2.9	45.4
40.0	76.32	48.17	24.20	2.9	48.3
42.0	76.32	48.17	24.20	2.9	51.2
44.0	76.32	48.17	24.20	2.9	54.1
46.0	71.23	44.96	24.20	2.5	56.6
48.0	61.05	38.54	24.20	1.7	58.3
50.0	50.88	32.12	24.20	0.9	59.2
52.0	40.70	25.69	24.20	0.2	59.4
54.0	30.53	19.27	24.20	-0.6	58.8
56.0	20.35	12.85	24.20	-1.4	57.5
58.0	10.18	6.42	24.20	-2.1	55.3
60.0	0.00	0.00	24.20	-2.9	52.4

Variable Storm Duration Storage Requirements

Modified Rational Method (MRM) Required Storage Volume 100 YEAR STORM EVENT - OUTLET B

519 THOROLD ROAD Project No.: 25028 Date: JUNE 2025

Design By: T. MUSSARI, B.ENG

Description: STORMWATER MANAGEMENT PLAN

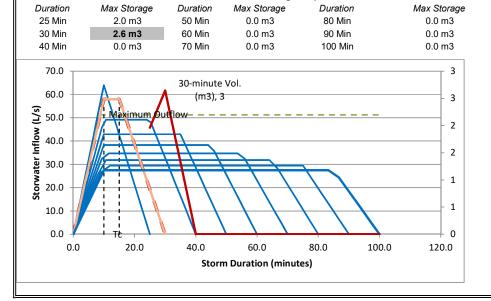
Storm Event: City of Welland - 100 Year IDF Curve

a = 1020.00 mm/hr b = 4.70 minutes

c = 0.73

Critical Storm Duration: 30.00 minutes Tail Multiplier (x1-11.5

Tc From Design: 10.00 minutes Storm Tail Time: 15.00 minutes


Accumulated Area x R (Ha): 0.181 <-- Area x Runoff Coefficient (Sewer Design Sheet)

Peak Rainfall Intensity: 115.44 mm/hr Peak Inflow at Tc: 57.95 L/s

Maximum Release Rate: 51.24 <-- Outlet Full Flow Capacity (Design Sheet)

Time When Outlet Exceeded: 8.84

Time (min)	Intensity (mm/hr)	Inflow (L/s)	Outflow (L/s)	Interval Volume (m3)	Total Required Volume (m3)
0.0	0.00	0.00	51.24	-3.1	0.0
1.0	11.54	5.79	51.24	-2.7	0.0
2.0	23.09	11.59	51.24	-2.4	0.0
3.0	34.63	17.38	51.24	-2.0	0.0
4.0	46.17	23.18	51.24	-1.7	0.0
5.0	57.72	28.97	51.24	-1.3	0.0
6.0	69.26	34.77	51.24	-1.0	0.0
7.0	80.81	40.56	51.24	-0.6	0.0
8.0	92.35	46.36	51.24	-0.3	0.0
9.0	103.89	52.15	51.24	0.1	0.1
10.0	115.44	57.95	51.24	0.4	0.5
11.0	115.44	57.95	51.24	0.4	0.9
12.0	115.44	57.95	51.24	0.4	1.3
13.0	115.44	57.95	51.24	0.4	1.7
14.0	115.44	57.95	51.24	0.4	2.1
15.0	115.44	57.95	51.24	0.4	2.5
16.0	107.74	54.09	51.24	0.2	2.6
17.0	100.05	50.22	51.24	-0.1	2.6
18.0	92.35	46.36	51.24	-0.3	2.3
19.0	84.65	42.50	51.24	-0.5	1.8
20.0	76.96	38.63	51.24	-0.8	1.0
21.0	69.26	34.77	51.24	-1.0	0.0
22.0	61.57	30.91	51.24	-1.2	0.0
23.0	53.87	27.04	51.24	-1.5	0.0
24.0	46.17	23.18	51.24	-1.7	0.0
25.0	38.48	19.32	51.24	-1.9	0.0
26.0	30.78	15.45	51.24	-2.1	0.0
27.0	23.09	11.59	51.24	-2.4	0.0
28.0	15.39	7.73	51.24	-2.6	0.0
29.0	7.70	3.86	51.24	-2.8	0.0
30.0	0.00	0.00	51.24	-3.1	0.0
	Va	riable Storm [Ouration Storag	ge Requirements	

APPENDIX D

Hydroworks HD4 Output File Sample Inspection Checklist

HYDROWORKS OUTPUT FILE

* Storm Water Management Sizing Model *
* Hydroworks, LLC *
* Version 4.4 * *
* Continuous Simulation Program * * Based on SWMM 4 4H *
* Based on SWMM 4.4H * * Hydroworks, LLC *
* Graham Bryant * * 2003 - 2021 *

Developed by

* Metcalf & Eddy, Inc. *
* University of Florida * * Water Resources Engineers, Inc. *
* (Now Camp Dresser & McKee, Inc.) *
* Modified SWMM 4.4 * *********************************
Distributed and Maintained by

*
* Hydroworks, LLC * * 888-290-7900 *
* www.hydroworks.com *
* ***********************************

* If any problems occur executing this *
<pre>* model, contact Mr. Graham Bryant at * * Hydroworks, LLC by phone at 888-290-7900 *</pre>
* or by e-mail: support@hydroworks.com *

* This model is based on EPA SWMM 4.4 * * "Nature is full of infinite causes which *
* have never occurred in experience da Vinci *

* Entry made to the Rain Block *
* Created by the University of Florida - 1988 * * Updated by Oregon State University, March 2000 *

519 THOROLD ROAD
CITY OF WELLAND
HydroDome Simulation

<pre># Precipitation Block Input Commands # ###################################</pre>

######################################
######################################
######################################
######################################
######################################
######################################
######################################
######################################
######################################
######################################
######################################
######################################
######################################
######################################

KODEA (from optional group B0)...... 2


```
= 0, Do not include NCDC cumulative values.
    = 1. Average NCDC cumulative values.
    = 2, Use NCDC cumulative value as inst. rain.
   KODEPR (from optional group B0)......

Print NCDC special codes in event summary:
= 0, only on days with events.
    *************
* Precipitation output created using the Rain block *
* Number of precipitation stations 1 *
  Number of precipitation stations... 1 **
Location Station Number
     1. 7287
STATION ID ON PRECIP. DATA INPUT FILE = 7287 REQUESTED STATION ID = 7287 CHECK TO BE SURE THEY MATCH.
"And wherever water goes, amoebae go along for #
the ride" Tom Robbins #
519 THOROLD ROAD
               CITY OF WELLAND
Snowmelt parameter - ISNOW.....
Number of rain gages - NRGAG.....
Horton infiltration equation used - INFILM...... 2
Maximum infiltration volume is limited to RMAXINF input on subcatchment lines.
Infiltration volume regenerates during non rainfall periods.
Ouality is simulated - KWALTY.....
IVAP is negative. Evaporation will be set to zero
   during time steps with rainfall.
Read evaporation data on line(s) F1 (F2) - IVAP..
Hour of day at start of storm - NHR.....
Minute of hour at start of storm - NMN.....
Time TZERO at start of storm (hours)........... 1.017
Use Metric units for I/O - METRIC.....
  ==> Ft-sec units used in all internal computations
Runoff input print control ...
                                                   0
Runoff graph plot control....
Runoff output print control..
                                                 0
Print headers every 50 lines - NOHEAD (0=ves. 1=no)
Print land use load percentages -LANDUPR (0=no, 1=yes)
Limit number of groundwater convergence messages to 10000 (if simulated)
Month, day, year of start of storm is:
                                           1/1/1971
Wet time step length (seconds).....
                                               300.
Dry time step length (seconds).....
Wet/Dry time step length (seconds)...
Simulation length is.....
                                         20051231.0 Yr/Mo/Dy
Percent of impervious area with zero detention depth 25.0
Horton infiltration model being used
```

Rate for regeneration of infiltration = REGEN * DECAY DECAY is read in for each subcatchment

REGEN =	

######################################	# #
JAN. FEB. MAR. APR. MAY	JUN. JUL. AUG. SEP. OCT. NOV. DEC.
	3.81 3.81 2.54 2.54 0.00 0.00
**************************************	D PIPE DATA *
umber ID # NGTO: T	Invert L Side R Side Intial Max Mann- Full annel Width Length Slope Slope Depth Depth ings Flow ype (m) (m/m) (m/m) (m/m) (m) (m) "N" (cms)
1 201 200 E	ummy 0.0 0.0 0.0000 0.0000 0.0000 0.0 0.0 0
**************************************	ENT DATA *
SUBCATCH- CHANNEL	TIONAL SUBCATCHMENT PARAMETERS* WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR DEPRES. STORAGE(MM) INFILTRATION DECAY RATE GAGE MAXIMUM (M) (HA) IMPERV. (M/M) IMPERV. PERV. IMPERV. PERV. RATE(MM/HR) (1/SEC) NO. VOLUME
	MAXIMUM MINIMUM (MM)
1 300 200	69.28 0.48 69.00 0.0200 0.015 0.250 0.510 5.080 63.50 10.16 0.00055 1 101.60000
TOTAL NUMBER OF SUBCATCHMENTS TOTAL TRIBUTARY AREA (HECTARE IMPERVIOUS AREA (HECTARES) PERVIOUS AREA (HECTARES) TOTAL WIDTH (METERS) PERCENT IMPERVIOUSNESS	S). 0.48 0.33 0.15 69.28

Storage Flow (m3) (m3/s)	
0. 0.000 72. 0.074	*************
* GROUNDWATER	
CATCH OR GRO	===== E L E V A T I O N S =======
	.05 0.00 0.00 0.61 0.61 3.484E-04 2.600 0.000E+00 1.000 0.00E+00
**********	PUT DATA (CONTINUED) *
**********	*******************
SATURA	O P E R T I E S PERCOLATION E T P A R A M E T E R S AULIC WILTING FIELD INITIAL MAX. DEEP PARAMETERS DEPTH FRACTION OF ET
	IVITY POINT CAPACITY MOISTURE PERCOLATION HCO PCO OF ET TO UPPER ZONE (mm/hr) (m)
	00 .1500 .3000 .3000 5.080E-02 10.00 4.57 4.27 0.350
*************************** * Arrangement of Subcatchm ***********************************	ents and Channel/Pipes * ******************* put table for connectivity * ment flows. *
Channel	
or Pipe 201 No Tributary (No Tributary S	
INLET 200 Tributary Char Tributary Suba	

200

Description	Variable		
Number of quality constituents	NQS	1	
Number of land uses	JLAND	1	
Standard catchbasin volume	CBVOL	1.22	cubic meters
Erosion is not simulated	IROS	0	
DRY DAYS PRIOR TO START OF STORM	DRYDAY	3.00	DAYS
DRY DAYS REQUIRED TO RECHARGE CATCHBASIN CONCENTRATION TO INITIAL VALUES	DRYBSN	5.00	DAYS
DUST AND DIRT STREET SWEEPING EFFICIENCY	REFFDD	0.300	
DAY OF YEAR ON WHICH STREET SWEEPING BEGINS	KLNBGN	120	
DAY OF YEAR ON WHICH STREET SWEEPING ENDS	KLNEND	270	

			LIMITING			CLEANING	AVAIL.	DAYS SINCE
			BUILDUP	BUILDUP	BUILDUP	INTERVAL	FACTOR	LAST
AND USE	BUILDUP EQUATION TYPE	FUNCTIONAL DEPENDENCE OF	QUANTITY	POWER	COEFF.	IN DAYS	FRACTION	SWEEPING
LNAME)	(METHOD)	BUILDUP PARAMETER (JACGUT)	(DDLIM)	(DDPOW)	(DDFACT)	(CLFREQ)	(AVSWP)	(DSLCL)
Urban De	EXPONENTIAL(1)	AREA(1)	2.802E+01	0.500	67.250	30.000	0.300	30.000

	Total Su
Constituent units	mg/l
Type of units	0
KALC	2
Type of buildup calc	EXPONENTIAL(2)
KWASH	0
Type of washoff calc	POWER EXPONEN. (0
KACGUT	1
Dependence of buildup	AREA(1)
LINKUP	0
Linkage to snowmelt	NO SNOW LINKAGE
Buildup param 1 (QFACT1).	28.020
Buildup param 2 (QFACT2).	0.500
Buildup param 3 (QFACT3).	67.250
Buildup param 4 (QFACT4).	0.000
Buildup param 5 (QFACT5).	0.000
Washoff power (WASHPO)	1.100
Washoff coef. (RCOEF)	0.086
Init catchb conc (CBFACT)	100.000
Precip. conc. (CONCRN)	0.000
Street sweep effic (REFF)	0.300
Remove fraction (REMOVE).	0.000
lst order QDECAY, 1/day	0.000
Land use number	1

Total Susp has a concentration of.. 0.0000 $\,\,\mathrm{mg}/\mathrm{l}$

CHANNEL/ CONSTITUENT PIPE Total Susp

201 0.000 * Subcatchment surface quality on data group L1 *

******* * DATA GROUP M1 *

TOTAL NUMBER OF PRINTED GUTTERS/INLETS...NPRNT.. NUMBER OF TIME STEPS BETWEEN PRINTINGS. INTERV...
STARTING AND STOPPING PRINTOUT DATES......

******** * DATA GROUP M3 *

CHANNEL/INLET PRINT DATA GROUPS..... -200

===> WARNING !! STORAGE UNIT IS FLOODING. EXCESS VOLUME CONVEYED AS DISCHARGE

519 THOROLD ROAD CITY OF WELLAND

Rainfall Station St. Catherines A State/Province Ontario

Rainfall Depth Summary (mm)

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
1971.	31.	0.	0.	0.	0.	0.	126.	93.	52.	60.	29.	0.	391.
1972.	0.	0.	0.	47.	65.	100.	39.	115.	63.	90.	1.	0.	521.
1973.	0.	0.	0.	103.	77.	71.	53.	29.	63.	139.	0.	0.	534.
1974.	0.	0.	0.	67.	105.	62.	50.	31.	74.	37.	110.	0.	536.
1975.	0.	0.	0.	0.	0.	94.	78.	76.	73.	56.	59.	6.	442.
1976.	0.	0.	0.	119.	136.	87.	101.	60.	72.	73.	13.	1.	662.
1977.	0.	0.	0.	94.	29.	69.	57.	150.	230.	71.	0.	1.	701.
1978.	0.	0.	0.	72.	43.	72.	43.	86.	156.	95.	0.	0.	567.
1979.	0.	0.	0.	84.	92.	33.	91.	88.	84.	129.	71.	0.	673.
1980.	0.	0.	0.	81.	39.	122.	60.	32.	79.	96.	45.	0.	554.
1981.	0.	0.	0.	91.	71.	106.	122.	61.	123.	91.	84.	0.	749.
1982.	0.	0.	0.	28.	65.	97.	36.	66.	82.	25.	143.	0.	544.
1983.	0.	0.	0.	78.	100.	65.	55.	106.	75.	122.	92.	0.	694.
1984.	0.	0.	0.	31.	113.	136.	19.	51.	144.	24.	44.	0.	562.
1985.	0.	0.	67.	32.	52.	64.	40.	94.	42.	109.	0.	1.	501.
1986.	0.	0.	0.	93.	113.	60.	85.	83.	98.	80.	43.	65.	719.
1987.	0.	2.	11.	77.	42.	80.	122.	97.	99.	71.	94.	34.	730.
1988.	0.	0.	41.	71.	42.	21.	110.	82.	70.	68.	75.	5.	585.
1989.	0.	0.	13.	63.	137.	108.	36.	45.	89.	73.	84.	0.	647.
1990.	0.	2.	38.	99.	124.	44.	68.	95.	56.	112.	96.	0.	735.
1991.	0.	0.	86.	124.	67.	31.	85.	57.	79.	64.	61.	28.	682.
1992.	0.	0.	29.	127.	56.	92.	185.	116.	77.	47.	103.	38.	869.
1993.	3.	0.	7.	83.	56.	86.	32.	61.	71.	92.	80.	38.	610.
1994.	0.	0.	44.	88.	105.	124.	48.	77.	117.	15.	0.	15.	633.
1995.	112.	23.	16.	48.	37.	60.	123.	66.	8.	137.	94.	0.	724.
1998.	0.	0.	0.	0.	51.	54.	64.	29.	9.	0.	1.	0.	207.
1999.	0.	0.	0.	79.	59.	35.	61.	58.	116.	78.	0.	0.	487.
2000.	0.	0.	0.	123.	134.	216.	51.	0.	0.	0.	10.	0.	534.
2001.	0.	0.	0.	56.	88.	45.	25.	30.	81.	129.	0.	0.	454.
2002.	0.	0.	0.	73.	104.	64.	53.	49.	52.	65.	8.	0.	468.
2003.	0.	0.	0.	10.	163.	77.	81.	64.	67.	73.	2.	0.	537.
2004.	0.	0.	0.	131.	126.	99.	115.	40.	88.	17.	0.	0.	616.
2005.	0.	0.	0.	38.	42.	78.	53.	120.	112.	0.	0.	0.	443.

Total Rainfall Depth for Simulation Period 19310. (mm)

Rainfall Intensity Analysis (mm/hr)

(mm/hr)	(#)	(%)	(mm)	(%)
2.50	21481	74.6	6454.	33.4
5.00	3585	12.4	3088.	16.0
7.50	1973	6.8	2886.	14.9
10.00	575	2.0	1233.	6.4
12.50	389	1.4	1070.	5.5
15.00	194	0.7	660.	3.4
17.50	210	0.7	846.	4.4
20.00	66	0.2	306.	1.6
22.50	92	0.3	487.	2.5
25.00	39	0.1	232.	1.2
27.50	37	0.1	246.	1.3

30.00	34	0.1	245.	1.3
32.50	29	0.1	228.	1.2
35.00	5	0.0	42.	0.2
37.50	10	0.0	90.	0.5
40.00	10	0.0	97.	0.5
42.50	12	0.0	124.	0.6
45.00	9	0.0	99.	0.5
47.50	1	0.0	12.	0.1
50.00	3	0.0	37.	0.2
>50.00	49	0.2	829.	4.3

Total # of Intensities 28803

Daily Rainfall Depth Analysis (mm)

(mm)	(#)	(%)	(mm)	(%)
(mm) 2.50 5.00 7.50 10.00 12.50 15.00 17.50 20.00 22.50 25.00 27.50 30.00 32.50 37.50 40.00	(#) 1077 507 326 226 150 111 100 67 45 37 23 20 12 8 9	(%) 38.9 18.3 11.8 8.2 5.4 4.0 3.6 2.4 1.6 0.7 0.7 0.7 0.4 0.3 0.3	(mm) 1247. 1850. 2006. 1958. 1672. 1495. 1620. 1260. 958. 881. 609. 575. 631. 405. 290. 350.	(%) 6.5 9.6 10.4 10.1 8.7 7.7 8.4 6.5 5.0 4.6 3.2 3.0 3.3 2.1 1.5
42.50 45.00 47.50 50.00 >50.00	4 4 2 4 15	0.1 0.1 0.1 0.1 0.5	165. 173. 91. 192. 882.	0.9 0.9 0.5 1.0 4.6

Total # Days with Rain 2767

Final Date (Mo/Day/Year) = 1/ 1/2006 Total number of time steps = Final Julian Date = 2006001

Final time of day = Final time of day = 2. seconds. 0.00 hours. 306816.0000 hours. Final running time = Final running time =

************ * Extrapolation Summary for Watersheds * * # Steps ==> Total Number of Extrapolated Steps * # Calls ==> Total Number of OVERLND Calls ***

 ${\tt Subcatch} \quad \# \; {\tt Steps} \quad \# \; {\tt Calls} \quad {\tt Subcatch} \quad \# \; {\tt Steps} \quad \# \; {\tt Calls} \quad {\tt Subcatch} \quad \# \; {\tt Steps} \quad \# \; {\tt Calls}$ 300 6173142 1566846

Extrapolation Summary for Channel/Pipes * # Steps ==> Total Number of Extrapolated Steps *
* # Calls ==> Total Number of GUTNR Calls *

Chan/Pipe # Steps # Calls Ch

Millimeters over

19263.

92460.

cubic meters Total Basin 92460. Total Precipitation (Rain plus Snow) 19263. Total Infiltration 28513. 5940. Total Evaporation Surface Runoff from Watersheds 58234. 12132. Total Water remaining in Surface Storage Infiltration over the Pervious Area... 28513. Infiltration + Evaporation +
Surface Runoff + Snow removal +
Water remaining in Surface Storage +
Water remaining in Snow Cover.....
Total Precipitation + Initial Storage. 93098. 19396.

The error in continuity is calculated as

* Precipitation + Initial Snow Cover * - Infiltration -*Evaporation - Snow removal -

*Surface Runoff from Watersheds -*Water in Surface Storage -*Water remaining in Snow Cover -0.691 Percent Error.... *********** Millimeters over Initial Channel/Pipe Storage.
Final Channel/Pipe Storage.
Surface Runoff from Watersheds
Baseflow.
Groundwater Subsurface Inflow.
Evaporation Loss from Channels
Channel/Pipe/Inlet Outflow.
Initial Storage + Inflow.
Final Storage + Outflow. cubic meters Total Basin 58234. 12132. 0. 0. Ω 58234. 12132. 58234. 12132. 58234. * Final Storage + Outflow + Evaporation - *
* Watershed Runoff - Groundwater Inflow - *
* Initial Channel/Pipe Storage *
* Error.... 0.000 Percent ************ * Continuity Check for Subsurface Water * Millimeters over cubic meters Subsurface Basin Total Infiltration 0. 0. Total Upper Zone ET Total Lower Zone ET Total Groundwater flow 0. 0. Total Deep percolation Initial Subsurface Storage Final Subsurface Storage
Upper Zone ET over Pervious Area
Lower Zone ET over Pervious Area 4389. 914. 0. 0. ********** Infiltration + Initial Storage - Final * * Storage - Upper and Lower Zone ET -* Groundwater Flow - Deep Percolation 0 000 Percent

SUMMARY STATISTICS FOR SUBCATCHMENTS

					PEF	RVIOUS A	AREA	IMPERVIOUS	S AREA	TOTAL SUB	CATCHMENT	r area
				TOTAL	TOTAL		PEAK		PEAK		PEAK	PEAK
	GUTTER			SIMULATED	RUNOFE	TOTAL	RUNOFF	RUNOFF	RUNOFF	RUNOFF	RUNOFF	UNIT
SUBCATCH-	OR INLET	AREA	PERCENT	RAINFALL	DEPTH	LOSSES	RATE	DEPTH	RATE	DEPTH	RATE	RUNOFF
MENT NO.	NO.	(HA)	IMPER.	(MM)	(MM)	(MM)	(CMS)	(MM)	(CMS)	(MM)	(CMS)	(MM/HR)
300	200	0.48	69.01	19262.47	101.892*	*****	* 0.05	017534.227	0.180	12130.202	0.230	174.090

*** NOTE *** IMPERVIOUS AREA STATISTICS AGGREGATE IMPERVIOUS AREAS WITH AND WITHOUT DEPRESSION STORAGE

SUMMARY STATISTICS FOR CHANNEL/PIPES

				MUMIXAM	MUMIXAM	MAXIMUM	MAXIMUM	TIME	LENGTH	MAXIMUM	RATIO OF	RATIO OF
	FULL	FULL	FULL	COMPUTED	COMPUTED	COMPUTED	COMPUTED	OF	OF	SURCHARGE	MAX. TO	MAX. DEPTH
CHANNEL	FLOW	VELOCITY	DEPTH	INFLOW	OUTFLOW	DEPTH	VELOCITY	OCCURRENCE	SURCHARGE	VOLUME	FULL	TO FULL
NUMBER	(CMS)	(M/S)	(M)	(CMS)	(CMS)	(M)	(M/S)	DAY HR.	(HOUR)	(CU-M)	FLOW	DEPTH
201				0.00			1	/ 0/1900 0.00)			

8/14/1972 14.25

TOTAL NUMBER OF CHANNELS/PIPES = 2

*** NOTE *** THE MAXIMUM FLOWS AND DEPTHS ARE CALCULATED AT THE END OF THE TIME INTERVAL

0.23

	###	#####	###	###				#####
#					Runoff Quali	ty Summar	y Page	±
#	Ιf	NDIM	=	0	Units for:	loads	mass rates	#
#					METRIC = 1	lb	lb/sec	#
#					METRIC = 2	kg	kg/sec	#
#	Ιf	NDIM	=	1	Loads are in	units of	quantity	#
#					and mass rat	es are qua	antity/sec	#
#	Ιf	NDIM	=	2	loads are in	units of	concentratio	n #
#					times volume	and mass	rates have u	nits#

200

Total Su NDIM = 0 METRIC = 2

		Total Su	1
Inp			
1.		10.	
2.	INITIAL SURFACE LOAD TOTAL SURFACE BUILDUP INITIAL CATCHBASIN LOAD TOTAL CATCHBASIN LOAD	8273.	
3.	INITIAL CATCHBASIN LOAD	0.	
4.	TOTAL CATCHBASIN LOAD	0.	
٥.	TOTAL CATCHBASIN AND SURFACE BUILDUP (2+4)	8273.	
Rem	aining Loads		
6.	LOAD REMAINING ON SURFACE	4.	
8.	REMAINING IN CATCHBASINS REMAINING IN CHANNEL/PIPES	0.	
Rem	ovals		
9.	STREET SWEEPING REMOVAL NET SURFACE BUILDUP (2-9) SURFACE WASHOFF CATCHBASIN WASHOFF TOTAL WASHOFF (11+12). LOAD FROM OTHER CONSTITUENTS PRECIPITATION LOAD SUM SURFACE LOAD (13+14+15). TOTAL GROUNDWATER LOAD TOTAL I/I LOAD NET SURGATCHMENT LOAD	712.	
10.	NET SURFACE BUILDUP (2-9)	7561.	
12.	CATCHBASIN WASHOFF	7555.	
13.	TOTAL WASHOFF (11+12)	7555.	
14.	LOAD FROM OTHER CONSTITUENTS	0.	
15.	PRECIPITATION LOAD	0.	
15a	.SUM SURFACE LOAD (13+14+15).	7555.	
16.	TOTAL T/T LOAD	0.	
17.	NET SUBCATCHMENT LOAD	0.	
	(15a-15b-15c-15d+16+16a) emoval in channel/pipes (17a,	7555.	
>>R	emoval in channel/pipes (17a,	17b):	
17a	.REMOVE BY BMP FRACTIONREMOVE BY 1st ORDER DECAY	0.	
18.	TOTAL LOAD TO INLETS	7555.	
19.	FLOW WT'D AVE.CONCENTRATION	mg/l	
	(INLET LOAD/TOTAL FLOW)		
Per	centages		
		_	
20.	STREET SWEEPING (9/2)	9.	
22.	NET SURFACE WASHOFF(11/10)	100.	
23.	STREET SWEEPING (9/2) SURFACE WASHOFF (11/2) NET SURFACE WASHOFF(11/10) WASHOFF/SUBCAT LOAD(11/17)	100.	
24.	SURFACE WASHOFF/INLET LOAD		
25	(11/18)	100.	
23.	SUBCATCHMENT LOAD (12/17)	0.	
26.	CATCHRASIN WASHOFF/		
	INLET LOAD (12/18)	0.	
27.			
28.	SUBCATCHMENT LOAD (14/17) INSOLUBLE FRACTION/	0.	
	INLET LOAD (14/18)	0.	
29.	PRECIPITATION/		
2.0	SUBCATCHMENT LOAD (15/17)	0.	
30.	PRECIPITATION/ INLET LOAD (15/18)	0.	
31.	GROUNDWATER LOAD/	0.	
20	SUBCATCHMENT LOAD (16/17) GROUNDWATER LOAD/	0.	
32.	INLET LOAD (16/18)		
	.INFILTRATION/INFLOW LOAD/		
	SUBCATCHMENT LOAD (16a/17)	0.	
	.INFILTRATION/INFLOW LOAD/ INLET LOAD (16a/18)	0.	
32c	.CH/PIPE BMP FRACTION REMOVAL	/	
	SUBCATCHMENT LOAD (1/a/1/)	υ.	
32d	.CH/PIPE 1st ORDER DECAY REMO	VAL/	
	SUBCATCHMENT LOAD (17b/17) INLET LOAD SUMMATION ERROR	0.	
33.	(18+8+6a+17a+17b-17)/17	0.	
	TION. Due to method of quality		
	lity routing through channel/ ge "Inlet Load Summation Erro		
The	se can be reduced by adjusting	g the time	e step(s).
Not	e: surface accumulation during	g dry time	steps at end of simulation
not	included in totals. Buildup	is only p	performed at beginning of

not included in totals. Buildup is only performed at beginning of wet steps or for street cleaning.

* TSS Particle Size Distribution *

Diameter (um)	왕	Specific Gravity	Settling Velocity (m/s)	Critical Peclet Number
2.	5.0	2.65	0.000003	0.054484
5.	5.0	2.65	0.000017	0.061150

* * * Summary of TSS Removal * *

* * * * * * * * *

TSS Removal based on Lab Performance Curve

Mode #	el	Low Q Treated (cms)	High Q Treated (cms)	Runoff Treated (%)	TSS Removed (%)
Unav	/ailabl	0.100	0.100	99.9	73.0
HD 4	1	0.100	0.100	99.9	79.1
HD 5	5	0.100	0.100	99.9	83.6
HD 6	5	0.100	0.100	99.9	87.0
HD 7	7	0.100	0.100	99.9	89.8
HD 8	3	0.100	0.100	99.9	92.1
HD 3	10	0.100	0.100	99.9	95.2
HD 3		0.100	0.100	99.9	97.2

* * Summary of Annual Flow Treatmnet & TSS Removal * * *

HD 5								
Year	Flow Vol	Flow Treated	TSS In	TSS Rem	TSS Out	TSS Byp	Flow Treated	TSS Removal
	(m3)	(m3)	(kg)	(kg)	(kg)	(kg)	(%)	(%)
1971.	13326.	13326.	149.	122.	27.	0.	100.0	82.0
1972.	16911.	16543.	201.	167.	34.	0.	97.8	82.9
1973.	16944.	16944.	210.	175.	35.	0.	100.0	83.2
1974.	17288.	17288.	225.	193.	32.	0.	100.0	85.8
1975.	14715.	14715.	193.	159.	34.	0.	100.0	82.4
1976.	21859.	21859.	243.	203.	41.	0.	100.0	83.3
1977.	23452.	23452.	238.	191.	48.	0.	100.0	80.0
1978.	18707.	18707.	224.	184.	41.	0.	100.0	81.9
1979.	22377.	22377.	258.	216.	42.	0.	100.0	83.8
1980.	17990.	17990.	239.	200.	40.	0.	100.0	83.5
1981.	24896.	24896.	268.	228.	41.	0.	100.0	84.8
1982.	17534.	17534.	218.	185.	33.	0.	100.0	84.9
1983.	23134.	23134.	279.	234.	45.	0.	100.0	83.8
1984.	18609.	18609.	216.	179.	37.	0.	100.0	82.7
1985.	16237.	16237.	212.	178.	34.	0.	100.0	83.9
1986.	23662.	23662.	290.	246.	44.	0.	100.0	84.7
1987.	24495.	24495.	292.	245.	47.	0.	100.0	83.9
1988.	19598.	19598.	244.	208.	36.	0.	100.0	85.2
1989.	21592.	21592.	237.	202.	35.	0.	100.0	85.4
1990.	24471.	24471.	299.	255.	43.	0.	100.0	85.5
1991.	22923.	22923.	280.	237.	43.	0.	100.0	84.6
1992.	29120.	29120.	326.	269.	56.	0.	100.0	82.8
1993.	19799.	19799.	274.	236.	38.	0.	100.0	86.3
1994.	21256.	21256.	227.	186.	41.	0.	100.0	82.0
1995.	24625.	24625.	271.	223.	47.	0.	100.0	82.6
1998.	6366.	6366.	103.	86.	18.	0.	100.0	83.0
1999.	15628.	15628.	208.	173.	34.	0.	100.0	83.5
2000.	17994.	17994.	182.	145.	37.	0.	100.0	79.4
2001.	14233.	14233.	170.	146.	24.	0.	100.0	85.9
2002.	14862.	14862.	198.	167.	31.	0.	100.0	84.5
2003.	16901.	16901.	205.	170.	35.	0.	100.0	83.0
2004.	20271.	20271.	211.	173.	37.	0.	100.0	82.2
2005.	14668.	14668.	161.	128.	33.	0.	100.0	79.7

* Summary of Toronto Rainfall Intensities * *

Rainfall	Intensity	(mm/h)	Flow (L/s)	Percent	age
	1.50		1.	4	34.	4
	2.25		2.	2	12.	2
	3.00		2.	9	9.	2
	3.75		3.	6	6.	9
	4.75		4.	5	6.	7
	5.75		5.	5	5.	0
	8.00		7.	7	7.	3
	10.00		9.	6	4.	3
	15.50		14.	8	6.	4
	23.25		22.	2	7.	7

*********** * Summary of Quantity and Quality Results at * Location 200 INFlow in cms. * Values are instantaneous at indicated time step *

519 THOROLD ROAD CITY OF WELLAND

Date Time Mo/Da/Year Hr:Min	Flow cum/s	Total Su mg/l
Flow wtd means	0.001	130.
Flow wtd std devs	0.002	170.
Maximum value	0.211	2187.
Minimum value	0.000	0.
Total loads	58094.	7549.
	Cub-Met	KILOGRAM

===> Runoff simulation ended normally.

===> SWMM 4.4 simulation ended normally.
Always check output file for possible warning messages.

************** * SWMM 4.4 Simulation Date and Time Summary * * Starting Date... July 10, 2025 *

Time... 16:39: 4.934 *

Ending Date... July 10, 2025 *

Time... 16:39: 8.51 *

Elapsed Time... 0.052 minutes. *

Elapsed Time... 3.117 seconds. *

SAMPLE INSPECTION REPORT

Owne	er:								
Location: 392 / 398 Thorold Road, Welland									
	Manhole Oil/Grit Separator:	HD4							
	Type of Inspection	☐ Monthly		☐ Annually		☐ Special			
	Inlet/Outlet Information								
		Inlet		Outlet					
	Clear of Debris	☐ Yes	□ No	☐ Yes	□ No				
	Build Up of Sediment	☐ Yes	□ No	☐ Yes	□ No				
	Action Taken:								
	Sediment Tank Information								
	A. Manhole Sump Depth: ± m from cover rim (to be as-constructed verified)								
	B. Measurement from Rim to Sediment Level	m							
	C. Depth of Sediment:		m (A - B)						
		measured depth of sediment is greater than 200mm then sediment val is required.							
	Presence of Contaminants								
	Oil	☐ Yes	□ No	Depth		m			
	Foam	☐ Yes	□ No	Depth		m			
	Action Taken:								
Name of Regulatory Agency				Telephone No.:					
				Transaction No.:					
Name of Licensed Waste Management Collector			Telephone No.:						
				Transactio	on No.:				
Owne	er Notification	☐ Yes	□ No	Other:					
		Time:		Date:					
Name	e of Inspector:								
Signe	d:				Date:				